a2 United States Patent

Newman et al.

US012248579B1

US 12,248,579 B1
Mar. 11, 2025

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

")

@
(22)

(60)

(1)

(52)

(58)

AI-BASED VEHICLE CYBERSECURITY
WITH 5G/6G SUB-NETWORK TOPOLOGY

Applicants:David E. Newman, Poway, CA (US);
R. Kemp Massengill, Palos Verdea, CA
(US)

David E. Newman, Poway, CA (US);
R. Kemp Massengill, Palos Verdea, CA
(US)

Inventors:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 18/587,346

Filed: Feb. 26, 2024
Related U.S. Application Data

Provisional application No. 63/610,930, filed on Dec.
15, 2023, provisional application No. 63/600,989,

(Continued)

Int. CL.

GO6F 21/57 (2013.01)

B60R 16/023 (2006.01)

GO6F 8/61 (2018.01)

GO6F 8/65 (2018.01)

GO6F 11/14 (2006.01)

U.S. CL

CPC ... GO6F 21/572 (2013.01); B60R 16/0231

(2013.01); GOGF 8/61 (2013.01); GO6F 8/65
(2013.01); GOGF 11/1433 (2013.01); GO6F
2221/034 (2013.01)
Field of Classification Search

CPC . GOG6F 21/572; GOGF 8/61; GOGF 8/65; GOGF
11/1433; GOGF 2221/034; GOGF 21/575;
B60R 16/0231

See application file for complete search history.

309 - External Base Station or access point

300 - Vehicle

(56) References Cited

U.S. PATENT DOCUMENTS

9,697,355 Bl 7/2017 Park
10,095,634 B2 10/2018 Sharma
(Continued)

OTHER PUBLICATIONS

S. Y. P, A. Gotkhindikar and S. K. Tiwari, “Survey on CAN-Bus
Packet Filtering Firewall,” 2022 International Conference on Edge
Computing and Applications (ICECAA), Tamilnadu, India, 2022,
pp. 472-478 (Year: 2022).*

(Continued)
Primary Examiner — Michael R Vaughan

&7

Cybersecurity is a critical requirement for current and future
vehicles, to protect against catastrophic cyber attacks.
Vehicles today (including land vehicles, waterborne
vehicles, and aircraft including such embodiments as air-
planes, helicopters, and air taxis) are constructed with
myriad separate sensors and actuators, which generally have
only limited cyber protections—a worrying vulnerability.
Therefore, procedures are disclosed for a vehicle-wide
5G/6G network in which each ECU (electronic control unit)
is a separate user device. Each ECU is also the manager of
a set of sensors and actuators, forming a local sub-network
with tightly regulated wireless protocols. Each ECU and
each end sensor/actuator may include an Al model to detect
and defeat cyber attacks. Each sensor/actuator boots from
ROM and executes from ROM, performs its specific tasks
on demand, and then communicates the results solely with
its ECU in a nested-star topology, thereby providing vehicle-
wide cybersecurity on par with 3GPP standards.

ABSTRACT

9 Claims, 14 Drawing Sheets

EXTERNAL BS/CN

308 - Doppler-corrected Communication Link —’-——3

H 302 - ECU

3051 - Downcast
(instructions only)

304 -
End Device

3062 - 3GPP Downlink
(PDSCH, PDCCH, etc)

[

o,
.,
"'.SA‘

ECU

”
%

o5 BS/CN

3052 - Upcast
(data and ACK only)

3071 - Downcast CAN
(instructions only)

304 - End Device/

3061 - 3GPP Uplink
(PUSCH, PUCCH, etc)

3072 - Upcast CAN
{data and ACK only)

301 - Internal Base
Station/Core Network

US 12,248,579 B1

Page 2
Related U.S. Application Data 2020/0344576 Al 10/2020 Li
- o 2020/0389474 Al 122020 Levy
filed on Nov. 20, 2023, provisional application No. 2021/0029807 Al 1/2021 Bard
63/591,038, filed on Oct. 17, 2023, provisional ap- %8%};8(1)(5)?2?3 i} 31%8%} Elelby
. . eVy
phca.tl.on No. §3/5$8,678, filed on Oct. 6, 2023, 2021/0203682 Al 72021 Bajpai
provisional application No. 63/578,649, filed on Aug. 2021/0337398 Al 10/2021 Kumar
24, 2023. 2021/0385658 Al 12/2021 Munteanu
2022/0141004 Al 5/2022 Murray
(56) References Cited 2022/0159444 Al 52022 Newman
2022/0224700 Al 7/2022 Appel
2022/0256348 Al 8/2022 McGrotty B60C 23/0415
U.S. PATENT DOCUMENTS 2022/0294789 Al 9/2022 Tikhomirov
2022/0303305 Al 9/2022 Shin
*
ig’;‘gg’i%g gé léggég éginl%foon """" BOOR 25/241 2022/0321655 Al* 10/2022 Mendez Rodriguezc.....
’ ’ GO6F 9/5044
}8’25’523 g% 1%83? (1\:4}?;? 2022/0369112 Al 11/2022 Sharma
11320953 B2 59022 Atad 2022/0377560 Al 11/2022 Zeng
11’470’104 Bl 10/2022 Chamorro 2022/0394032 Al 12/2022 Matsumura
11’483’339 Bl 10/2022 Kaimal 2022/0394471 Al 12/2022 Zhang
115205881 B2 122022 Wang 2022/0400118 Al 122022 Jiang
11636766 B2* 4/2023 Staahl HO4W 4/40 2022/0400125 Al 12/2022 Mendelowitz
’ T TR e 701/70 2023/0022063 Al 1/2023 Zheng
11,665,178 B2 5/2023 Guiterrez 2023/0058016 Al 2/2023 Wood
" L 2023/0253137 Al 8/2023 Huo
11,985,150 B2 5/2024 Bajpaicccooveenee. HO041 67/34 L1
2007/0067085 AL* 3/2007 Lu BGOT 8/24 2023/0254294 Al 82023 Williams
""""""""""""""" 340/440 2023/0269224 Al 8/2023 Whittle
2016/0330629 Al* 11/2016 Laifenfeld HO4W 12/12 %8%8%8%‘2 ﬁ} 1%833 gghnltea“u
2017/0013062 Al 1/2017 Kim
2017/0257767 Al 9/2017 Zhao
2017/0355381 Al* 12/2017 Miloser GO7C 5/008 OTHER PUBLICATIONS
2018/0176009 Al 6/2018 Agerstam
2018/0217831 Al* 8/2018 Madridcoooovernnnan GO6F 8/65 A. Bostrom and F. Wotawa, “Wireless Threats Against V2X Com-
%8}3;8352?2? ﬁ} }8;58}3 ggs?dg munication,” 2023 IEEE 23rd International Conference on Software
2019/0346860 ALl* 11/2019 HOULS oovoeeeeveroeonn, GOLS 11/04 Quality, Reliability, and Security (QRS), Chiang Mai, Thailand,
2020/0026852 Al 1/2020 Sella 2023, pp. 529-540 (Year: 2023).*
2020/0218531 Al* 7/2020 Kushwaha GO6F 8/66
2020/0228976 Al 7/2020 Kawakami * cited by examiner

U.S. Patent Mar. 11, 2025 Sheet 1 of 14

US 12,248,579 B1

FIG. 1

E‘loe
100
\ 57107

|

Internal base <

Infotainment
station

Lights, etc. ECU
ECU

FIG. 2 203 - Sub-Network

204 - End Devices

205 - Wireless Restricted Link

o’ 5007 - ECU
204 - End Device \ 201 - Internal Base Station
and Core Network
215 - Wired____
Restricted Link

. 208 - External Link

205 - Wireless
Restricted Link

209 - External Base Station

\;’ and Core Network
L .4 206 - 5G/6G Channel
214 - Sensor/Actuator Tool e
.- 202-ECU

215 - Wired Restricted Linkg"f .."";/203 - Sub-Network

é 8) é) T~207 - Restricted CAN bus

204 - End Device

U.S. Patent Mar. 11, 2025 Sheet 2 of 14 US 12,248,579 B1

. 309 - External Base Station or access point{EXTERNAL BS/CN)

300 - Vehicle

308 - Doppler-corrected Communication Link /§

302 - ECU
304 - 3051 - Downcast 3062 - 3GPP Downlink

End Device (instructions only) (PDSCH, PDCCH, etc)

N ’
BS/CN
@y e
/ 3061 - 3GPP Uplink

3052 - Upcast (PUSCH, PUCCH, etc)
(data and ACK only)

3072 - Upcast CAN
3071 - Downcast CAN (data and ACK only)

(instructions only)
301 - Internal Base

304 - End Device/ Station/Core Network
G L] \
4043 - ROM
v
. . 404 - End
4042 - Micro-controller [« 4044 - Transceiver »| 4045 - Antenna >' Device
))
1
4041 - Sensor/Actuator !
1 _
1
405 - Restricted Link=—"]
' ™
4021 - RAM "
1
i v
\.402 - ECU or
4022 - Processor [« 4023 - Transceiver [€® 4024 - Antenna master-ECU
L,: 4025 - Antenna
Optional second antenna=—™— &~~~ v,
406 - Managed 5G/6G Channel
Vehicle

401 - Internal Base Station

408 - Doppler corrected 5G/6G Channelgl I

409 - External Base Station Fixed

Assets

U.S. Patent Mar. 11, 2025 Sheet 3 of 14 US 12,248,579 B1

FIG. 5

501 - Human enters vehicle and starts the engine. If vehicle is autonomous,
human specifies the destination.

v

502 - ECUs access the internal base station, refreshing their membership in the
local network of the vehicle.

503 - Internal base station finds external base station and registers as a user
device on the external base station.

504 - During the trip, internal base station manages the ECUs, and ECUs manage
their end devices, to perform measurements or to actuate switches or valves.

. 2 —

| 505 - A new device, such as human's cell phone, seeks entry into the internal base

' station. Human sees a notice and presses a button to allow entry.

e

506 - A hacker tries to enter the vehicle network by accessing the internal base
station. Human sees entry request notice, rejects it.

v

507 - Hacker tries to enter by co-opting an end device. End device processor
detects unusual activity (based on its own an Al model and re-boots, thereby
erasing the hacker from end device. (Al model in ECU may also assist.)

. 2 ———

1 508 - Venhicle arrives at destination. Human notes that a current open request is
: displayed, to update certain ECUs (but only while the vehicle is idle). Human

] presses button to allow, then exits. Vehicle then downloads an encrypted update
:
1

file, decrypts with secure key, and installs the update,

U.S. Patent Mar. 11, 2025 Sheet 4 of 14 US 12,248,579 B1

FIG. 6

601 - 602 - 603 - 604 -

Sensor Actuator ECU Internal
End Device End Device Hub Device Base Station

611 - Internal base station detects traffic %

jam ahead, warns ECU of hazard. 632 631

612 - ECU requests speed, proximity data g - --- L P
from sensors (one shown).

613 - Proximity sensor measuresthe - _____ |_ .
proximity, sends datatoeEcu. | | TTTT==- >

614 - ECU orders gradual increase in brake
pressure for 5 seconds.

615 - Actuator acknowledges and confirms| L ____ j
brake increasing.

616 - Proximity sensor transmits alarm
message to ECU indicating rapid change. |~ =7 """ ==d--—oao____ >l

617 - ECU orders immediate braking at
75% of maximum.

618 - ECU informs internal base station of 6€8

the sudden change and braking. |

619 - At a later time, a hacker attempts to ;'\639
invade the sensor end device.

620 - Sensor transmits unsolicited, non- |7 ===~ao___ |
alarm message to ECU. i |

621 - ECU becomes suspicious, informs %

internal base station of possible attack.

642
622 - ECU orders sensor to re-boot and R _ -------------
run self-tests.

643
623 - Sensor re-boots, runs self-tests, —— |
reports the test results to ECU. | T T 7T mmm—eoL L -
624 - ECU checks results, also sends 644
results to internal base station. \\>
625 - Base station confirms the test
results are all ok, attack is erased.]
. 645 \

626 - ECU instructs sensor to resume A\ P 646

normal operations.

U.S. Patent

Mar. 11, 2025

FIG. 7A

701 - THREAT TYPES

Sheet 5 of 14

US 12,248,579 B1

702 - SUB-NETWORK SECURITY

Arbitrary code execution
Advanced persistent threat

Zombie (under control of attacker)

The microcontroller cannot execute code
from RAM because there is no executable
RAM.

Backdoor (unsecured access)

Rootkits, Bootkits

The microcontroller boots from ROM and
operates code only from ROM.

Polymorphic (hidden in other code)

Drive-by download

ROM cannot be altered by wireless
signals.

Hardware backdoor or circuit flaw

Hardware trojan (malware in chip)

Op-code is simple, single-task on ROM.
Op-code can be tested.

Keyloggers (copy keystrokes)

End device does not have keys.

Fraudulent dialers

End device does not have phone access.

Privilege escalation

End device does not use privileges.

Shellcode (start new command shell)

End device does not use shells.

Cryptojacking

End device does not use crypto.

Email fraud (fake offers, etc.)
Email spoofing (fake return address)

Phishing (deception or impersonation)

End device does not have access to email.

Screen scraping (collect data from user display)

End device does not have a display.

Adware (on-line advertising)
Denial-of-service attack (message clogging)
Spamming (sending many unwanted messages)

Botnet (armv of corrupted transmitters)

End device is not on the Internet.

Social engineering (trickery, manipulation)

Scareware (false alerts, threats)

End device is not in contact with people.

U.S. Patent

Mar. 11, 2025

FIG. 7B

711 - THREAT TYPES

Sheet 6 of 14

712 - SUB-NETWORK SECURITY

Logic bombs (triggered by a condition)
Time bombs (triggered by time)

Fork bombs (self-replicating code)

Zip bombs (intended to crash system)
Worms (self-replicating code)

Viruses (self-replicating intrusion malware)

Code-injection (hiding malware in data)

End device has no executable RAM and no
hard-drive.

End device has no access to any other
system.

End device has no 5G or 6G capability.

End device has no communication
software other than the restricted link to
Hub device.

Trojan horses (code hidden inside code)
Code-injection (hiding malware in data)

Ransomware (demanding money)

Hub device interprets all messages as
measurement data.

Hub device alters all data before passing
to base station.

Rogue security software

End device does not have security
software. Firmware is on ROM.

Remote access Trojans

End device does not have remote access.

Cross-site scripting (inject code into website)

Web shells (code using website code)

End device does not have a website.

Fake Browser-helpers (DLL objects)

End device does not use DLLs.

US 12,248,579 B1

U.S. Patent Mar. 11, 2025 Sheet 7 of 14 US 12,248,579 B1

FIG. 8

801 - Hacker somehow invades the sub-network and infects an end device.

vy

802 - When prompted for a 803 - ECU has ordered periodic
measurement, the infected end device integrity tests. End device
transmits something unexpected, such as performs the tests, shows error,
unsolicited, wild data, wrong format, etc. thereby exposing the intrusion.

vV v

804 - ECU quarantines the end device, and does not send the bogus data to the
internal base station. Instead, the ECU transmits a pre-configured alarm to the
base station, indicating that a malfunction or an attack exists. After that, the ECU
transmits nothing to the base station, to avoid any possibility of spreading the
infection.

v

805 - ECU (possibly assisted by base station Al model) reviews the symptoms,
orders specific self-tests to confirm or identify the attack versus malfunction.

v

806 - ECU instructs the end device to re-boot and report when done.

v

807 - After re-boot, ECU instructs end device to perform additional security tests,

such as calculating a parity or hash of the boot sequence or the operating system

or RAM, and transmitting the result to the ECU. ECU measures response times.
End device does not have pre-knowledge of the correct answers.

v

rN< 808 - Security checks ok? >Y1

810 - ECU extends the quarantine, accepts no more 809 - ECU resumes

upcast messages from the end device, and communication with

transmits a maintenance request to the driver or, if base station and files
autonomous, to the owner. complete report.

v

811 - ECU tries to adapt other end devices in the sub-network to do the tasks that
the infected one was doing, so that the overall operation can go on while waiting
for a maintenance check.

812 - Optionally, the internal base station may request assistance from other :
sources in defeating the attack. Base station may then ask ECU to have the end :
device perform specific tests to clarify/identify the problem. :

U.S. Patent Mar. 11, 2025 Sheet 8 of 14 US 12,248,579 B1

' 912 - End Device local ID 916 - Payload (instruction or data)

915 - upcast/downcast
Format-1 |

921 - demod
923 - End Device local ID 926 - Payload
Format-2 924 - ECU local ID

931 - Initial demod
932 - Gap

933 - End Device local ID 936 - Payload 937 - Final demod

Format-3 / /935 - Flags / /

942 - Broadcast indicator (0000 or 1111) 948 - Acknowledgements

943 - End Device local ID
Format-4 946/- Payload for all end devices j
N R T S T
1 [I | 1 1 [| 1
952 - Dual-address indicator (2222) 956 - Payload
Format-5 / 953 - Local ID #1 /954 - Local ID #2 /

963 - Polling bits

962 - Polling Indicator 965 - Space for reply messages

Format-6 961 - Pre-polling / 969 - Post-polling

971 -Type=Installation
972 - ID of end device
973 - ID of ECU 978 - Error-detection code

974 - Key Index
975 - Password 977 - flags

Format-7 /976 - Firmware

\. J

979 - Encryptggsection

U.S. Patent Mar. 11, 2025 Sheet 9 of 14 US 12,248,579 B1

FIG. 10

1001 - The electrical power of an established end device is turned off and on.

v

1002 - Automatic delay prevents digital activity until power has stabilized.

v

1003 - End device automatically begins executing boot sequence in ROM
beginning at predetermined address, such as hex-000100. The first (or last) block
of addresses in the main PROM are reserved for security codes, instructions, etc.

v

1004 - Boot sequence resets the registers, erases RAM if present, then initiates
security self-checks.

v

1005 - Begin running the operating system, which sits in ROM contiguous with the
boot sequence.

_____________________________ 2

1006 - Optionally, transmit pre-configured message to ECU announcing that the
end device has come on-line.

-
1
1
1
1

1007 - Run more security checks. If any irregularities were seen in the self-check
sequences, end device informs ECU at this time.

1008 - If the operating system includes periodically recurring actions, such as a
periodic measurement or a periodic sleep cycle, start it now automatically.

v

1009 - When awake, monitor the restricted link to detect new instructions from the
ECU.

v

1010 - Upon an instruction to re-boot, set the instruction counter back to bottom of
PROM, execute as usual. Since the boot sequence starts at the first executable
location, this automatically runs the boot sequence, and then the regular system

code which sits immediately after the boot sequence.

U.S. Patent Mar. 11, 2025 Sheet 10 of 14 US 12,248,579 B1

FIG. 11

1101 - 1102 - 1103 - 1109 -
END DEVICE ECU BASE STATION HUMAN
1111 - Base station receives new 1130- A—
firmware, requests permission to install. Request.
1131 -
1112 - Human presses button to allow. Granted. \4/
1133 -

1113 - Base station sends firmware to

ECU. |r:szillztlzn 4%
1114 - ECU encrypts firmware using \ 8¢ 1132 - New

single-use key, sends with index to end firmware.

device.
1115 - End device receives messagg,

. . . 1134 - End
immediately turns off receiver.

device is
1116 - End device finds key using index.7® isolated.

1117 - End device decrypts firmware——¢j
using single-use key.

1118 - End device enables PROM —o
writing using the installation message.

1119 - End device erases the single-
—9

use key from key table (or adds key 1135 - Receiver

and index to a used-kev list). turns on during
boot sequence.

1120 - End device re-boots. — au

1121 - During re-boot, end device L

calculates firmware hash, sends to ECU. |

dlates firmw ’ 1136 - Hash

1122 - ECU checks hash. If ok, done.

1123 - If hash check FAILS, ECU sends

alert to base station on possible 1138 -

1137 - Alarm.
intruder, re-encrypts the firmware Firmware again. arm
using different key, sends to end N\ -1 %
device for a second attempt. “

1124 - End device again kills receiver, \1139 - End

decrypts firmware, enables write device is

mode, erases the new key, installs isolated.

firmware, erases RAM, re-boots, and 1141 -

calculates new hash. ~ L__ Status:

1125- This time the hash checks ok. /Ty all ok.

ECU cancels the alarm, sends status to 1140 - H_a:c:rl _ 1143 -
base station, approves the end device. [4=~"V" Done.

1142 -
1126- Optionally, inform human that Approval %

update is done.

U.S. Patent Mar. 11, 2025 Sheet 11 of 14 US 12,248,579 B1

FIG. 12

1201 - In a vehicle, each end device is pre-configured with a table of N single-use
keys, stored in the end device's PROM at non-execution addresses. Each end
device has a different set of single-use keys.

v

1202 - Human authorizes an update of the operating system in the end device.

v

1203 - ECU transmits, to end device, an installation message including: instruction
to do the update, an index of the single-use key in the key table, the encrypted
updated firmware, information on write-enable password, and error-detection code.

v

1204 - If there is any reception problem or error-detection disagreement, end
device sends NACK, and ECU re-sends the message - but selecting a different
single-use key from the table.

v

1205 - End device receives the message and then disables the receiver, to
prevent attacker from interfering while the update is in progress.

v

1206 - End device finds the indicated single-use key in the table, checks that it is
not already in the used-key list and is not zero.

v

1207 - Using the single-use key, the end device retrieves or decrypts the write-
enable password of the PROM, then activates the write function in the PROM, and
erases the current single-use key in the key table.

v

1208 - End device decrypts the new firmware using the single-use key, and stores
the decrypted firmware in the RAM. End device checks hash of decrypted version.

v

1209 - End device installs the decrypted firmware starting at first executable
address, disables the write-enable function, erases all RAM, triggers a re-boot.

v

1210 - The re-boot automatically returns the receiver to service, again erases
registers and RAM, and calculates hash of the as-installed firmware.

v

1211 - End device transmits a message to the ECU indicating the hash, and ECU
checks it. If all ok, the sub-network resumes normal operation with the updated
end device. If the check fails, the ECU quarantines the end device.

U.S. Patent Mar. 11, 2025

Sheet 12 of 14 US 12,248,579 B1

FIG 13A 1300 - PROM
1302 - 1303 - 1304 -
’Y Boot Op System Blank or NOP
\
1301 - Key Table
FIG. 13B 1310 - PROM 1315 - UROM
. /
1312 - | 1313 - Op System 1314 - 1316 -
Boot no update code ’T Blank or NOP Update code
U
1311 - Key Table
1325 - UROM
FIG. 13C 1320 - PROM or SD-ROM
L
1322 - 1323 - 1324 - 1321 -
Boot Op System Blank or NOP Key Table
FIG. 13D 1335 - p d 1330 - PROM 1336 -
7a asswor 7/ Retained memory
1332 - 1333- 4 1334 -
1 o~
Boot Op System “ Return to 0 /
7
1331 - Key Table
FIG. 13E 1343 - Op System 1340 - PROM
{ \
1342 - 1344 - _
Boot Blank ™~ 1347 -TellECU
1346 - Skip-ahead 1341 - Key
FIG 13F 1350 - PROM
. Z
1353 - Op System| 1354 - 1352 -| 1356- 1357 -
no update code | Go to 1000 Boot | Update | Go to 0000 ~X

Y
1358 - First half

Y 1351 - Key Table
1359 - Second half

F|G 1 3G 1360 - PROM-1 1369 - PROM-2
- AN
1362 - 1366 - 1361 - 1363 - Op System 1364 -
Boot Update code Key table no update code Return to 0000

U.S. Patent Mar. 11, 2025 Sheet 13 of 14 US 12,248,579 B1

FIG. 14

1401 - ECU instructs each upcast and downcast message will include the 8-bit
identification code of the end device, and no identification of the ECU.

v

1402 - An end device detects an upcast message using its identification code,
which it did not send. Transmits alarm to ECU, indicating address conflict.

v

1403 - ECU instructs increasing to 16-bit identification codes.

v

1404 - ECU detects a downcast message, that it did not send, containing the 16-
bit identification code of one of its end devices - another address conflict.

v

1405 - ECU instructs that each upcast and downcast message will include the 16-
bit identification codes of the end device AND of the ECU.

rN< 1406 - Another address conflict? >Yj

1408 - Hub device continues to monitor 1407 - Hub device sends alarm
traffic for presence of the second sub- message to base station indicating
network. possible cyber attack.

r’“(1409 - Second sub-network remains?>—Y1

1411 - ECU requests, and obtains, 1410 - Continue using 16-bit
permission from larger network, to reduce identification codes, including the
identification requirements. ECU code.

v

1412 - ECU instructs that each upcast
and downcast message will include the 8-
bit identification code of the end device
only, and will not include the ECU
identification.

U.S. Patent Mar. 11, 2025 Sheet 14 of 14 US 12,248,579 B1

FIG. 15

1501 - ECU detects illegal or 1502 - End device detects unexpected
unexpected message from end device. change in RAM or status, tells ECU.

v v

1503 - ECU orders end device to perform integrity tests: calculate hash of ROM,
hash of RAM, rapidly perform action multiple times. Report each test result.

v

1504 - ECU checks test results for agreement with expected values.

I 25—

1505 - ECU measures time interval between ordering each test and receiving the
test result. Compares to previously measured time interval.

rN< 1506 - End device passes all tests? >Yj

1508 - ECU orders end device to re- 1507 - ECU and end device resume
boot, then orders the same tests. normal operations. Optionally,
inform base station of results.

rN< 1509 - End device passes all tests? >—Y1

1512 - ECU quarantines the end device, 1510 - ECU and end device resume

quarantined end device. 1 again later.

requests help from maintenance normal operations.
department.

* QT T - *‘ Tt 1
Fmmmmm 1511 - Optionally, inform base "
! 1513 - If possible, ECU arranges other 11 station of results. Optionally, treat |
I end devices in the sub-network to i future communications from end !
: compensate for the missing " device with special care. I
' measurements or actuations of the I Optionally, repeat the integrity tests :
1 1
! :

US 12,248,579 Bl

1
AI-BASED VEHICLE CYBERSECURITY
WITH 5G/6G SUB-NETWORK TOPOLOGY

PRIORITY CLAIMS AND RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 63/610,930, entitled “Vehicle
Cybersecurity with 5G/6G Sub-Network Topology”, filed
Dec. 15, 2023, and U.S. Provisional Patent Application Ser.
No. 63/600,989, entitled “High-Security Low-Complexity
Updating of 5G/6G Wireless Systems”, filed Nov. 20, 2023,
and U.S. Provisional Patent Application Ser. No. 63/591,
038, entitled “Cybersecure Low-Complexity IoT Sub-Net-
works for 5G/6G”, filed Oct. 17, 2023, and U.S. Provisional
Patent Application Ser. No. 63/588,678, entitled “Cyberse-
cure Low-Complexity IoT Sub-Networks for 5G/6G™, filed
Oct. 6, 2023, and U.S. Provisional Patent Application Ser.
No. 63/578,649, entitled “Intrinsically-Secure Low-Com-
plexity IoT Sub-Networks for 5G/6G”, filed Aug. 24, 2023,
all of which are hereby incorporated by reference in their
entireties.

FIELD OF THE INVENTION

The disclosure pertains to vehicle security, and more
particularly to methods for maintaining high cybersecurity
in networked vehicles.

BACKGROUND OF THE INVENTION

Currently, vehicles include hundreds of sensors and actua-
tors in dozens of separate electronic systems, generally
lacking coherent coordination due to their separate objec-
tives and separate development histories. Increasingly con-
nected vehicles, with increasingly autonomous functions,
are susceptible to a variety of hacking scenarios through the
peripheral devices and other vulnerable points. What is
needed is a planned internal communications system span-
ning the entire electronic environment of next-generation
vehicles, designed specifically for cybersecurity.

This Background is provided to introduce a brief context
for the Summary and Detailed Description that follow. This
Background is not intended to be an aid in determining the
scope of the claimed subject matter nor be viewed as
limiting the claimed subject matter to implementations that
solve any or all of the disadvantages or problems presented
above.

SUMMARY OF THE INVENTION

In a first aspect, there is a vehicle comprising: an internal
wireless network contained in the vehicle, the internal
wireless network comprising an internal base station and an
internal core network; a plurality of electronic control units
(“ECUs”), each ECU registered as a user device on the
internal wireless network and configured to communicate
wirelessly with the internal base station on managed com-
munication channels; and for each ECU, two or more end
devices associated with the ECU, each end device compris-
ing a sensor or an actuator, the sensor or actuator operably
connected to a processor comprising a programmable read-
only memory (“PROM”), the processor operably connected
to a wireless transceiver configured for wireless communi-
cation with the ECU; wherein the internal base station or
internal core network comprises a transceiver configured to

10

15

20

25

30

35

40

45

50

55

60

65

2

communicate, using a Doppler-corrected wireless link, with
an external base station or external core network at a fixed
site external to the vehicle.

In another aspect, there is a method for updating, by an
end device in a vehicle, software comprising firmware in a
programmable read-only memory (“PROM”) of the end
device, the method comprising: receiving an installation
message transmitted by an electronic control unit (“ECU”)
associated with the end device, the end device comprising a
tool operably connected to a processor operably connected
to a wireless transceiver, wherein the tool comprises a sensor
or an actuator, the processor is operably connected to a
programmable read-only memory (“PROM”), and the wire-
less transceiver is configured to receive the installation
message; determining, according to the installation message,
an index; retrieving, according to the index, a particular
single-use key contained in a single-use key table compris-
ing two or more different single-use keys, wherein the
single-use key table is contained in the PROM or another
memory of the end device; decrypting, according to the
particular single-use key, encrypted firmware contained in
the installation message; determining, according to the
installation message, a password or data indicating a pass-
word; using the password to activate a write-enable function
of the PROM, and installing the decrypted firmware in the
PROM; erasing or obfuscating the installation message;
erasing or obfuscating the particular single-use key in the
single-use key table; and executing a boot sequence con-
tained in the firmware.

In another aspect, there is a vehicle comprising: a vehicle-
wide wireless network compliant with 5G or 6G standards;
a plurality of electronic control units (“ECUs”), wherein
each ECU is registered as a user device on the vehicle-wide
wireless network, and wherein each ECU is configured to
control one or more end devices associated with the ECU;
wherein each end device comprises a tool comprising a
sensor or an actuator, wherein each tool is operably con-
nected to a processor, which is operably connected to a
wireless transceiver; and wherein each end device is further
configured to communicate with a particular ECU that is
associated with the end device, and to ignore or reject
messages not from the particular ECU.

This Summary is provided to introduce a selection of
concepts in a simplified form. The concepts are further
described in the Detailed Description section. Elements or
steps other than those described in this Summary are pos-
sible, and no element or step is necessarily required. This
Summary is not intended to identify key features or essential
features of the claimed subject matter, nor is it intended for
use as an aid in determining the scope of the claimed subject
matter. The claimed subject matter is not limited to imple-
mentations that solve any or all disadvantages noted in any
part of this disclosure.

These and other embodiments are described in further
detail with reference to the figures and accompanying
detailed description as provided below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic showing an exemplary embodiment
of a vehicle including electronic control units, according to
some embodiments.

FIG. 2 is a schematic showing an exemplary embodiment
of sub-networks connected to a larger managed network,
according to some embodiments.

FIG. 3 is a schematic showing an exemplary embodiment
of communication between an end device, an electronic

US 12,248,579 Bl

3

control unit, an internal base station, and an external base
station, according to some embodiments.

FIG. 4 is a schematic showing an exemplary embodiment
of a sub-network communicating with a larger managed
network, according to some embodiments.

FIG. 5 is a flowchart showing an exemplary embodiment
of a procedure for adding an end device to an existing
sub-network, according to some embodiments.

FIG. 6 is a schematic showing an exemplary embodiment
of two end devices in a sub-network communicating with a
manager device, according to some embodiments.

FIGS. 7A and 7B are schematics showing an exemplary
embodiment of sub-network features that prevent various
types of cyber attacks, according to some embodiments.

FIG. 8 is a flowchart showing an exemplary embodiment
of a procedure for detecting and mitigating a cyber attack on
a sub-network, according to some embodiments.

FIG. 9 is a schematic showing an exemplary embodiment
of various formats of messages between an end device and
a manager device of a sub-network, according to some
embodiments.

FIG. 10 is a flowchart showing an exemplary embodiment
of a procedure for a sub-network to mitigate a hacking
attack, according to some embodiments.

FIG. 11 is a schematic showing an exemplary embodi-
ment of a procedure for updating the firmware operating
system of an end device wirelessly, according to some
embodiments.

FIG. 12 is a flowchart showing an exemplary embodiment
of a procedure for securely updating firmware in an end
device, according to some embodiments.

FIG. 13A-13G are charts showing various exemplary
embodiments of a memory configuration in an end device,
according to some embodiments.

FIG. 14 is a flowchart showing an exemplary embodiment
of a procedure for selecting identification codes, according
to some embodiments.

FIG. 15 is a flowchart showing an exemplary embodiment
of a procedure for responding to a possible hacker attack,
according to some embodiments.

Like reference numerals refer to like elements throughout.

DETAILED DESCRIPTION

Systems and methods disclosed herein (the “systems” and
“methods”, also occasionally termed “embodiments” or
“arrangements” or ‘“‘versions” or “examples”, generally
according to present principles) can provide urgently needed
wireless communication protocols for connected vehicles,
while maintaining the high level of cybersecurity demanded
of next-generation communications. The disclosed systems
and methods are suitable for vehicles having a large number
of processors and a large number of sensors and actuators,
wirelessly connected to various information sources. Dis-
closed are examples of security architectures and memory
models configured to resist cyber attacks and enable remote
updating without compromising security.

“Vehicles” include land-based vehicles such as cars,
trucks, and trains, waterborne vehicles such as boats and
submarines, and airborne vehicles such as airplanes and
helicopters and air taxis. Such vehicles commonly include
electronic control units (“ECUs”) for controlling various
functions such as the engine, the collision-avoidance system,
the lights, the infotainment system, and others. Each sub-
system generally includes a plurality of basic sensors and
actuators configured to do a specific task. ECUs such as
CAN (controller area network), LIN (local interconnect

10

15

20

25

30

35

40

45

50

55

60

65

4

network), FlexRay, and MOST (media-oriented systems
transport), may use wired connections, while others use
wireless signals to access external sources such as GNSS
(global navigation satellite systems), commercial radio and
television channels, and networks such as 3GPP-compliant
(third generation partnership project) networks, and the
Internet.

Each ECU, sensor, actuator, and software routine were
developed for separate purposes. Typically a modern vehicle
has 1500-3000 semiconductor integrated circuits in 150
ECUs, each with 50 or more actuators and sensors, and
typically 50 microcontrollers or the like. These numbers are
expected to increase as myriad new services are demanded
by customers. Unfortunately, the mix of electronics in
modern vehicles has become a complex matrix of overlap-
ping systems, expensive to build and cumbersome to main-
tain. Of even greater concern, the this provides numerous
points of entry for cyber attacks. Therefore, to enable greater
cybersecurity, a vehicle-wide electronic topology is dis-
closed herein, providing a simpler and more secure archi-
tecture, lower costs, simpler maintenance, and the ability to
learn from experience. The disclosed topology may provide
improved abilities to detect and deter cyber attacks. The
disclosed systems and methods will therefore be the
enabling factor in next-generation vehicles.

Sub-Network Topology

In some embodiments, a vehicle may contain a vehicle-
wide, mobile, 3GPP-compliant, managed network, centered
on an internal base station in the vehicle, which communi-
cates with external fixed-site access points using Doppler-
corrected wireless links. Each ECU of the vehicle is regis-
tered as a user device on the internal network,
communicating according to 5G or 6G standards. In addi-
tion, each ECU is a member of a small “sub-network” that
includes a specific group of sensors and actuators (“end
devices”). Each sub-network is configured in a “star” or
“hub-and-spoke” topology, with the ECU serving as both
manager and gateway to the 3GPP network. For special
cases, such as imagers, a master-ECU may manage a set of
sub-ECUs, each with a separate sub-network but coordinat-
ing with the other sub-ECUs, through the master.

In some embodiments, the end devices communicate
exclusively with their ECU hub device, using secure proto-
cols specific to the sub-network tasks, and on different
frequencies to avoid interference. The ECU transmits
instructions to its end devices, and the end devices transmit
measurement data or pre-configured reply messages (such as
acknowledgements) back to their ECU. Thus each end
device may include: (1) a single-task sensor or actuator
“tool”, (2) a processor such as a microcontroller, (3) a secure
memory containing a boot sequence and an operating system
(collectively, the “firmware”) for the end device, and (4) a
wired or wireless transceiver for communicating with the
ECU. All sub-network messages may be “unicast”, that is,
addressed to a particular end device or ECU recipient.
Messages from an end device to its ECU are termed “upcast”
herein, and from the ECU to one of the end devices are
“downcast”, to differentiate from the “uplink” and “down-
link” messages on the 3GPP network.

In some embodiments, the sub-networks may include
both wireless and wired connections between the end
devices and the ECU. For the wireless links, the sub-
network may use frequencies and protocols different from
the 3GPP network. Many end devices have very low com-
munication needs, use very low transmission power, and
occupy very low bandwidths with simpler communication
protocols than the managed channels of 3GPP. Sub-network

US 12,248,579 Bl

5

communications may be “time-spanning” when each modu-
lated signal is sequential in time on a single frequency,
whereas end devices that are sufficiently capable may trans-
mit “frequency-spanning” (such as OFDM, orthogonal fre-
quency-division multiplexing) messages that occupy mul-
tiple frequencies. Messages on restricted links may be
synchronized to the 3GPP network, or in other cases may be
transmitted grant-free, at-will, and asynchronously (for pre-
cise timing, for example). For the wired sub-network links,
many options exist, such as single-wire analog or digital
signals with chassis ground, two-wire differential signals
such as 4-20 mA or CANbus, multi-wire connections includ-
ing dedicated DC power levels and shielded ground, etc. It
is expected that future vehicles, with increased capabilities,
may convert increasingly to wireless sub-network commu-
nications, for reasons of versatility and cost.

In some embodiments, the sub-network communication
links, between the ECU and its end devices, may be termed
“restricted links”, in that they support only the types of
messages needed by the end devices to do their specialized
tasks, and no more. For example, downcast messages (ECU
to end device) may be configured as commands and upcast
messages may be configured as data or pre-configured
replies. In addition, the end devices may accept commands
only in pre-configured formats and signed by the ECU,
ignoring all other signals, while the ECU may accept only
measurement data and pre-configured replies signed by one
of'its end devices, ignoring all other signals on the restricted
link. Such restrictions greatly reduce the attack surface
available to hackers. In addition, the sub-network may be
“closed”, whereby each end device, and the ECU, may reject
or ignore all attempts to join the sub-network. If an end
device receives an illegal communication attempt, the end
device may transmit a pre-configured alarm message to the
ECU. Likewise the ECU may respond to any entry request,
or other illegal communication attempt on the sub-network
frequencies, by transmitting an alarm message to the internal
base station. Thus the end devices may serve as a first
firewall, protecting their ECU from intrusion, and the ECUs
may serve as a second firewall, protecting the 3GPP network
from cyber attacks. For example, the end devices may detect
suspicious patterns in its own operations such as weird
sensor data, and may re-boot to expel the attacker before the
ECU can be affected. Likewise, the ECU may detect suspi-
cious activity in one of its end devices based on their data
and replies, and then may take defensive action such as
requiring the end device to perform various integrity tests.

The end devices and/or the ECU may include Al models
trained to discriminate between a cyber attack, noise, inter-
ference, and equipment malfunctions, based on features of
the suspicious activity and wireless signals that the end
device or the ECU may have noticed. The Al model may
also provide suggestions as to what actions to take, based on
the fault source and other inputs, to clarify and/or mitigate
the problem. For example, an ECU that receives a suspicious
message—allegedly from one of the end devices, but using
an excluded message type or format error or the like—may
determine that either a malfunction has occurred or a hacker
is active. An Al model in the ECU may facilitate such a
determination, and may suggest actions that the end device
can take to expel the hacker. By restricting the sub-network
communications to only those pre-configured messages and
formats necessary for the end devices to perform their work,
and by rejecting unauthorized entry into the sub-network,
and by responding defensively to any irregularity on the
restricted links, the sub-network may obtain greatly
enhanced cybersecurity, equivalent to the 3GPP standards,

30

40

45

6

but without the complex security software and procedures
required for 3GPP user devices.
ID Codes

In some embodiments, each sub-network message may
include the recipient’s ID followed by the sender’s 1D, or
vice-versa, for disambiguation. Each message may also
include an indicator such as a single bit, indicating whether
the message is upcast message or downcast. Each message
may include a “type” field or header indicating the message
type, such as a command or data, thereby indicating whether
the message is upcast or downcast. Each end device and
ECU may be configured with a globally unique permanent
“long” ID code, such as the 128-bit IPv6 identification (or a
longer identification specified in a future “IPv7” standard, or
some other convention). The long ID code may be fabricated
into the processor, or provided in an unalterable read-only
memory, or otherwise preserved in each end device and
ECU. For normal usage, however, the long identification
code may be cumbersome. Therefore, a “local” identifica-
tion code with a smaller number of bits may be assigned to
each end device, and also to the ECU. For example, the local
identification codes may have just 4, 6, 8, 12, 16, or 24 bits,
or other size depending on how many end devices are
present.

In some embodiments, an ECU may instruct its end
devices to use the longer ID codes, to avoid address conflicts
with an adjacent sub-network or vehicle that happens to use
the same local identification codes. An address conflict may
be detected when the ECU detects a downcast message that
includes the local identification code of the ECU or one of
its end devices, yet the ECU did not send that downcast
message. Likewise, an end device may detect an upcast
message that includes that end device’s local identification
code, but which the end device did not send. Either event
indicates a cyber attack, a mistake, a malfunction, or an
address conflict with a nearby vehicle. In most cases, the
ECU may assume it is due to a second vehicle, and therefore
may instruct its end devices to begin using an expanded
message format until the two vehicles move apart. For
example, the ECU may transmit a broadcast message to its
end devices, informing them of the change. To avoid any
confusion with the other vehicle’s end devices, broadcast
messages may be signed by the ECU’s long ID code.

In a first option, the expanded message format may
include multiple identification codes of various sizes. For
example, each end device, and the ECU, may have five
levels of identification code, such as an 8-bit, 16-bit, 32-bit,
64-bit, and 128-bit ID codes. Each message may include bits
indicating the format, such as the length of the ID code in
use, whether the ECU identification is included, and other
information. On command of the ECU, the end devices
switch to successively higher or lower ID levels. When the
conflict subsequently subsides due to motion of the vehicles,
the ECU may instruct the end devices to switch back down
to the shortest local identification codes. In addition, the
ECU can command that each message will include the 1D of
the ECU as well as the end device, thereby identifying the
sub-network in each message. Then if conflicts still persist,
due perhaps to two vehicles using the same ECU local
identification codes, one or both ECUs can change identi-
fication codes, or switch to the longer codes, or wait for the
conflicting vehicle to leave. Alternatively, the conflicting
sub-networks may temporarily switch to single-subcarrier
communications, in which each sub-network is temporarily
assigned to a different subcarrier frequency, until the con-
flicting vehicles drift apart. As a last resort, the ECU can
order its end devices to begin using their unique 128-bit

US 12,248,579 Bl

7

identification codes, and optionally the 128-bit identification
code of the ECU as well. This should definitively solve the
address conflict problem, but at the expense of slower
communications and increased overhead due to the longer
codes. Further address conflicts would then indicate a hacker
intrusion.

In some embodiments, the sub-network may switch back
to the shorter identification codes if the address conflict
subsides for a predetermined amount of time, or when other
sensors on the vehicle indicate that no other vehicles are
closely adjacent. For example, the internal base station may
know, based on traffic cameras for example, when a proxi-
mate vehicle has moved farther away. An Al model in the
ECU, or in the base station, may determine which ID codes
to use, and other communication settings, based on the type
of conflict observed and its incidence rate. The Al-based
parameter assignments may be selected according to the
priorities of the tasks performed by each sub-network, or the
costs associated with conflicted messages, or the messaging
throughput requirements of each sub-network, for example.
The AI output may indicate which end devices should use
which ID codes as well as the ID codes of the ECU devices,
and which sub-networks may communicate on which sub-
carriers, which sub-networks are to use which length of
identification code, and which ones are to include the ECU
code in the message, among other parameters. In addition,
the Al model may enable improved detection of attack
signatures. For example, a trained Al model may enable the
3GPP network, cooperating with the ECU device, to deter-
mine whether unexpected behavior is due to noise, equip-
ment malfunction, or a malevolent attack-based on the
behavior observed, its frequency of occurrence, and its
distribution among end devices, in multiple sub-networks or
just a single sub-network, whether the conflicts are corre-
lated with specific actions in the vehicle, among other input
parameters. The Al model may provide, as additional output,
suggestions as to which integrity tests the end or ECU
devices should perform to clarify the problem. The results of
those tests may then be provided as further input to the Al
model, for further mitigation steps. Since vehicles include
many sub-networks interacting in complex ways, the
demands of dynamically allocating resources and limitations
responsive to changing real-time conditions, are beyond
human capacity, but are well-suited to Al optimization.

MESSAGE EXAMPLES

In some embodiments, an end device can wait for an
explicit command from the ECU before performing each
task. For example, the ECU can transmit a predetermined
downcast instruction message to the end device instructing
it to do the task, and the end device may responsively
execute ROM firmware associated with the instruction. In
other embodiments, however, an end device may initiate the
measurement or action autonomously, without an explicit
ECU command. For example, the end device may determine
that a certain predetermined condition is met and then do the
task, such as making a measurement at a pre-scheduled
measurement time, or periodically, until instructed to stop.
The end device can also communicate the results to the ECU
each time the task is performed, or withhold the results
unless certain conditions are met. For example, the end
device may inform the ECU if the measurement result
exceeds a threshold, and remain silent otherwise. The end
device may inform the ECU that an attempted actuation
failed, or other alarm condition, and otherwise remain silent.
Alternatively, the end devices may transmit an acknowl-

10

15

20

25

30

35

40

45

50

55

60

65

8

edgement after receiving each downcast instruction, or after
performing the instructed action. In case of an unexpected
problem, the end device can transmit an unsolicited upcast
message to the ECU, configured as an alarm message with
the ID codes of the end device and the ECU.

In some embodiments, the end device may include pre-
configured responses as well as numerical values. For
example, a downcast instruction of “change the DRX period
to 10 seconds” may elicit the upcast response “done”, or
“DRX period is now 10 seconds”. On occasion, it may be
necessary for the ECU to provide some kind of data to the
end device. In that case, the downcast message may still be
configured as a command, such as “change threshold to 12.3
degrees”. (These example messages are shown as readable
text for clarity. In a practical sub-network, the messages may
be encoded in a terse resource-efficient code, as discussed
below.)

Cybersecurity of Sub-Networks

In some embodiments, an end device may be configured
to detect a cyber attack based on a received message. For
example, the end device may receive a command addressed
to that end device, but with unusual or illegal form, or oddly
formatted, or at an unexpected time, or conflicting with a
previous command, or other predetermined basis for suspi-
cion. Optionally, the end device may include a small Al
model to assist in such analysis, and to guide the subsequent
mitigation. The end device may then transmit an alarm
message to the ECU. Alternatively, the end device may
begin a series of self-checks to determine whether the
problem is due to a cyber attack or receiver noise or
interference or some kind of equipment malfunction, and
then inform the ECU of the self-check results. The end
device may also re-boot to expel the presumed attacker, and
then automatically inform the ECU that it has re-booted.

In some embodiments, the secure memory of an end
device (or the ECU) may be a ROM read-only memory. For
example, the ROM may be a UROM (unalterable read-only
memory) which cannot be altered under any circumstances,
or a PROM (programmable read-only memory) which can
be altered under certain circumstances. Some PROM
devices can be rewritten electronically by activating a write-
enable feature, while other devices require a physical
enablement, such as an ultraviolet light, to erase and rewrite.
Some PROM devices can be altered at individual memory
addresses, while other types must be fully erased and
reprogrammed. The PROM may be a Flash or EPROM or
EEPROM memory (Erasable or Electrically Erasable Pro-
grammable Read-Only Memory), each of which may be
altered using electrical signals by activating an electronic
write-enable function. The write-enable function may be
enabled only under certain circumstances, such as upon
decrypting a password, or upon providing a physical enable-
ment such as a button press. A “SD-ROM” (self-destruct
read-only memory) erases each entry after a single read, and
thus may be used to store values that are to be used only
once. For example, the SD-ROM may automatically erase
each entry as soon as it is read, and subsequently return only
zero if read a second time. Such a self-destruct ROM
prevents an intruder from transmitting a bogus installation
message using one of the encryption keys, because that key
will be zero when the end device subsequently attempts to
retrieve it. The term “secure memory” or “ROM” without
further specification, includes all the types listed in this
paragraph.

In contrast, a RAM (random-access memory) is a volatile,
transitory, readily altered memory, and therefore may not be
secure. Registers and the like in the processor, or elsewhere,

US 12,248,579 Bl

9

are also not secure because they could be altered by a hacker,
in principle. Therefore, the end device may erase all erasable
addresses upon each re-boot. Alternatively, the end device
may leave a few registers or RAM locations unerased, to
preserve persistent data values such as the operating condi-
tions, for convenience.

In some embodiments, the end device may be configured
to boot only from its ROM and execute instructions only
from ROM. Booting from ROM ensures that any malware
injected into RAM by an attacker will be eliminated upon
each re-boot when the RAM and registers are erased, before
passing control to the operating system. Booting from ROM
may thereby restore the device to a pre-configured state,
thereby expelling the attacker. The end device may also
execute operating system instructions only in the ROM
memory, and never from a RAM, if present. The processor
may be configured to prevent executing instructions from
any location or address outside the ROM memory, and
thereby prevent an attack in which the attacker loads mal-
ware into RAM. In addition, the ROM of an end device can
include an operating system which includes routines for
acquiring data, communicating with the ECU, performing
security tests, and other operations that the end device needs
to perform, but no routines that the end device does not need.
Each unnecessary capability is an attack surface.

In some embodiments, the sub-network may be fully
pre-configured and engineered for particular tasks. For
example, the globally-unique identification code of each end
device in the sub-network may be permanently installed and
unalterable. The local identification code of the end device,
the long and short codes of the ECU, the boot sequence and
operating system, and other necessary firmware may be
installed in the ROM and tested during fabrication. In a
second version, the ROM memory chip may be manufac-
tured separately and then installed in the new end device
before the end device is mounted in the sub-network. In a
third version, the end device may be fully assembled but the
PROM may remain blank until just before or just after
installation of the end device into a vehicle, at which time
the firmware may be installed in the PROM. In each case,
the ECU, or an autonomous testing device, may run the new
end device through a wide variety of security tests, revealing
any irregularities or defects before release.

In some embodiments, the end device may be configured
to re-boot from ROM frequently, even when there is no
indication of an attack. The re-boot may be on a predeter-
mined schedule, or responsive to an event such as after
transmitting each upcast message, or periodically, such as
once per second or per minute or per hour or other period-
icity specified in the end device’s ROM or specified by the
ECU, or after performing each task, or at other times
according to the application, or randomly. The end device
may thereby expose or expel a hacker before much harm can
be done.

In some embodiments, all messages between the end
devices and the ECU may be encrypted, with a different
encryption key for each end device, and different encryption
keys for upcast and downcast messages. In many cases,
however, most sub-network messages may be transmitted
plain, not encrypted. Encryption is expensive in time and
energy, both of which are in limited supply for many end
devices. In some embodiments, only the longer messages,
such as installation messages, may be encrypted, whereas
there may be no reason to encrypt shorter or pre-configured
messages such as acknowledgements that have no private
content. The ECU, or the internal base station, may use an

10

15

20

25

30

35

40

45

50

55

60

65

10

algorithm or an Al model to determine which messages are
to be encrypted, which are to be sent plain, what encryption
to use, and when.

In some embodiments, a message may include the end
device ID in plain text, early in the message, and the rest of
the message may be encrypted. An end device can then
readily determine whether the message is intended for it
according to the recipient ID, and can ignore the rest of the
message if not. Likewise an upcast message with the same
format enables the ECU to determine which of its end
devices is transmitting the message. The encrypted message
may include an encryption indicator indicating whether it is
encrypted, such as a particular bit pattern placed at the start
of'the message, or spaced apart from the start of the message
by a gap of no transmission, or in a predetermined location
within the message such as immediately after the end
device’s identification code (or the ECU’s identification
code if present), indicating that the subsequent portion is
encrypted. A gap of no transmission may be placed before or
after the encryption indicator, or between the plain and
encrypted portions. The encryption indicator may be mul-
tiplexed with the upcast/downcast indicator and/or an indi-
cation of the length of the ID code in use. The encryption
indicator may also serve as a demodulation reference and a
phase-tracking reference. For example, the particular bit
pattern may exhibit certain modulation levels that the recipi-
ent can use to recalibrate its modulation levels for better
reception of the subsequent message, such as a short-form
demodulation reference showing the maximum and mini-
mum phase (or amplitude) modulation levels, from which
the receiver can calculate the intervening modulation levels.
The particular levels may indicate whether the rest of the
message is encrypted.

In some embodiments, the end device may be configured
to detect a cyber attack. For example, the end device may
detect an unexpected change in its RAM memory or regis-
ters or actuator position, or other alteration which the end
device did not do. This is strong evidence of intrusion.
Alternatively, the end device may perform a measurement
and find an unexpected value, such as a value out of range
or inconsistent with other data, which may be due to noise
or sensor failure, or may be evidence of an attacker. The end
device may become suspicious upon receiving an instruction
allegedly from the ECU, but malformed or inconsistent or at
an unexpected time or in an inappropriate situation. In
another example, the end device may respond to a regular
ECU command and reply as usual, only to be asked by the
ECU why the end device sent an unsolicited reply message
(which indicates that the ECU did not send that command).
In each case, or for other possible attack signatures, the end
device may take defensive action. The defensive action may
include transmitting an alarm message to the ECU, or
automatically initiating a series of self-tests in the end
device’s operating system. Alternatively, the ECU may
instruct the end device to execute those self-tests, responsive
to the alarm or unsolicited reply message. An Al model, in
the ECU and/or the end device, may analyze the observa-
tions and determine whether a cyber attack, or a sensor
malfunction, or receiver noise is most likely the cause, and
suggest the best mitigations.

In some embodiments, the end devices may include
routines in the ROM firmware for various self-tests. To
detect any alteration of the boot sequence or the operating
system, the end device can calculate a hash or CRC or parity
construct of the ROM contents, or subsets thereof. The hash
(or etc.) may be configured with 16 or 32 bits for conve-
nience, or with 128 bits to match the security of the ID

US 12,248,579 Bl

11

codes, or other length as required for security. To analyze the
problem in more detail, the end device may encrypt and
transmit the entire contents of the ROM, instead of a hash.
The ECU may then quarantine the end device since any
change in the ROM indicates a serious failure. The end
device can also encrypt and transmit the contents of the
RAM to the ECU, to determine whether hackers have
injected malware. In addition, to determine whether the
RAM is still under control of the processor, the end device
may attempt to erase all of the RAM, and then calculate a
hash or parity construct of the RAM memory after erasure,
which should be zero. To check the processor registers, the
end device may set the registers into a known configuration,
and then calculate a hash of the registers, and report to the
ECU. Any disagreement indicates either an attack or a
hardware failure. To detect hacker interference in the opera-
tion of its sensor or actuator, the end device may trigger a
series of measurements or actuator actions in rapid succes-
sion, followed by a report of the results. Any inability to
perform such a stress-test (which the end device has previ-
ously performed successfully) would indicate an intrusion or
some kind of equipment deterioration. The ECU may know
the correct answer for each of these tests, but the end device
does not, in this example. Hence the ECU (or its Al model,
or an Al model in the base station/core network) can use the
results to localize the problem, or at least to determine
whether the problem is still present after re-booting.

To detect an alteration in the firmware routines, the ECU
may instruct the end device to perform a specific self-test
and then report the results. The ECU measures how much
time elapses for the end device to complete and report the
results, and compares with a previously measured time
interval for the same test. For best precision, the end device
may transmit the report asynchronously as soon as the
results are known. The ECU may require the other end
devices in the sub-network to remain silent until the self-test
has been reported and acknowledged, to avoid cross-traffic
delays.

If the results of the self-tests are all in agreement with
expectations, the ECU may allow the end device to resume
normal operations; however, the ECU may treat messages
from that end device with special care thereafter. If the test
results indicate a likely cyber attack, the ECU may instruct
the end device to re-boot, and then perform the self-tests
again. If the second self-tests also indicate an intrusion, the
ECU may quarantine the end device by cutting off all further
communication with it, and may submit a maintenance
request. In addition, the ECU may perform its own self-tests
to check whether the attack has propagated upward into the
ECU, and if so, the ECU may alert the internal base station
(using a pre-configured alarm, to avoid any possibility of
propagating the infection), and may then quarantine itself by
cutting off all further uplink communication until notified
that the issue has been repaired.

In some embodiments, upon a suspected cyber attack, the
end device and/or the ECU may be configured to avoid
re-booting, so as to preserve the evidence of intrusion, from
which the identity and/or method of the attacker may be
determined. If the self-tests indicate something other than a
cyber attack, such as a flaky sensor or communication faults
or excessive noise, then preserving the evidence may lead to
an effective solution. For example, if the problem is deter-
mined (by an Al analysis) to be merely a noisy sensor, the
ECU may begin averaging multiple measurements to obtain
a more accurate value. If the self-tests indicate that the
problem is caused by weak signal reception or message
interference, the ECU may increase its downcast power to

10

15

20

25

30

35

40

45

50

55

60

65

12

improve reception by the end device, and/or instruct the end
device to increase its upcast power.

In some embodiments, an end device may become unable
to respond to instructions from the ECU due to a software
bug, or a cyber attack, or a receiver problem, among others.
Even worse, the end device may be unable to recognize, or
respond to, a command to re-boot. The ECU (or the internal
base station) may then force a re-boot by temporarily cutting
off the power to the end device, which then re-boots upon
power-up.

Securely Updating

In some embodiments, one or more end devices may need
to update its firmware, to fix a bug or enable new tasks for
example. Disclosed below are three versions of ways to
securely update the firmware of an end device.

In a first updating version, an end device may be updated
by physically detaching the end device from the sub-net-
work in a repair station, changing the firmware electroni-
cally, re-installing the end device, and informing the ECU
via the 3GPP network.

In a second updating version, the firmware of an end
device may be updated using a physical enablement that
hackers cannot copy. The physical enablement enables the
PROM to be altered, but cannot be done remotely. Updating
by physical enablement may be suitable when the end device
is accessible to a repairman but not accessible to a hacker.
For example, a physical enablement may be a button press
on the end device, configured to energize the write-enable
input of the PROM. The physical enablement may be a
JTAG (joint test action group) connector which can repro-
gram the PROM when connected to a suitable programmer
device. The physical enablement may be illumination of the
PROM by an ultraviolet light, which may be applied manu-
ally to the device. In some embodiments, the physical
enablement may be the placement of a NFC (near-field
communication) device against the end device, in which
case the updated code may be transferred through the NFC
device wirelessly. The physical enablement may be a SIM
(subscriber identification module) card that can be changed
for updating. For example, a new operating system may be
included in the memory of the SIM card, and the end device
may copy the new firmware into its PROM. Alternatively,
the end device may treat the SIM memory as its ROM, and
may execute the boot sequence and operating system
directly from the SIM memory thereafter, with no other
installation steps required. In that case, replacing the SIM
card is equivalent to replacing the firmware. As a further
option, the SIM card may include installation instructions or
a password or other enabling information, which enables the
end device to install a wirelessly delivered copy of the new
firmware, which would be rejected absent the SIM card
enablement. In each case, the physical enablement allows
the firmware to be updated, but cannot be performed
remotely.

In a third updating version, the end device firmware may
be updated using wireless communications alone, without a
physical enablement, yet may maintain a high level of
cybersecurity on par with the 3GPP network. For example,
the end device may have a table of “single-use keys”
installed in protected ROM, reserved for system updating. A
single-use key is a decryption key that is used only once, and
then discarded. The ECU may encrypt the new firmware
using one of the single-use keys, then transmit the encrypted
firmware to the end device in a downcast message, along
with an index or address indicating which of the single-use
keys was used. The end device does not have direct access
to the single-use key table, except when so instructed by the

US 12,248,579 Bl

13

installation message, and then can retrieve only the one key
indicated by the index. The end device can then decrypt the
firmware using the key, and install the firmware in the
PROM.

In some embodiments, the single-use key table may be in
a portion of the end device’s ROM, such as the first or last
portion of the ROM that includes the operating system
and/or the boot sequence. The portion containing the single-
use keys may be protected from being executed inadver-
tently, and may also be protected from snooping by a hacker.
For example, each address of the PROM may include an
extra bit or other indicator indicating which addresses are
protected. The extra bit causes the processor to read the
contents as NOP or zero when read, absent the installation
message instructions. The processor can then retrieve the
single-use key from the protected table only only when
authorized by the installation message. In addition, the
indicators may indicate that the ROM addresses (other than
the key table) are to be read as execution instructions only,
never as data, whereas the key table addresses are to be read
as data only when instructed by an installation message.
(Single-use keys that resemble executable instructions may
be discarded, to prevent inadvertent execution of the key
table.)

In other embodiments, the single-use key table may be
protected in a separate memory, separate from the operating
system. The key table memory may be an unalterable
UROM which cannot be changed. In addition, each address
of the UROM, or at least those addresses occupied by the
single-use key table, may include the non-execution indica-
tor, as described above, to prevent inadvertent execution and
snooping.

In some embodiments, the single-use keys may be suffi-
ciently long to defeat a brute-force attack. For example, the
single-use keys may be 128 bits in length for sufficient
security with current technology, or a longer bit length if
needed to defend against future quantum computers and the
like. The key may be applied cyclically to decrypt the
message in segments, effectively a “non-public secret key”
that is discarded after use. Alternatively, the single-use key
may be equal in length to the entire encrypted firmware,
effectively a “one-time pad” of random values. However,
such a huge key could be cumbersome. The single-use keys
are expected to provide ample security for wireless updating
of firmware in low-cost end devices, while requiring only
basic operations that the low-cost end device microcon-
trollers provide natively. “Absolute” security is expensive
and time-consuming; “sufficient” security is cheap and
quick.

To consider a specific non-limiting example, the single-
use keys could be 128-bit codes, and the table may contain
256 such codes (thereby enabling N=256 wireless updates).
The required memory size is then N*KeySize/WordSize. For
KeySize=128, N=256, and an 8-bit WordSize in memory,
the table fits in a standard 4 k byte ROM, which are readily
available at low cost. In the future, key codes with 256, 512,
1024, or larger bit counts may be necessary to prevent
brute-force attacks using quantum computers or other high-
performance computing technologies. In some embodi-
ments, the firmware can still be updated even after the N
keys have been used. To do so, a physical enablement may
be applied, enabling the new firmware and/or key table to be
copied into the system PROM. Alternatively, the key table
may be in a secondary PROM separate from the system
PROM. In either case, the physical enablement may allow
the entire key table to be refreshed, thereby providing an
additional N updates.

10

15

20

25

30

35

40

45

50

55

60

65

14

In some embodiments, a new single-use key table may be
included in each installation message, encrypted along with
the new firmware. The new key table may be the same as the
old key table but with all of the previously-used keys erased.
Or, more preferably, the new key table may provide all new
and different keys upon each installation. Unlimited updates
are thereby supported.

In some embodiments, upon receiving an update instal-
lation message, the end device may immediately disable its
receiver (or ignore incoming signals) thereby preventing
attackers from interfering with the updating procedure. The
ECU may order the other end devices in the sub-network to
remain silent until the updating is completed, thereby
enabling the ECU to listen for an attacker’s attempted
intrusion signal. In addition, the ECU may detect a bogus
installation message sent by an attacker, and may respond by
immediately transmitting random signals on the same fre-
quency, thereby causing numerous message faults, and caus-
ing the end device to reject the message.

In some embodiments, the end device system memory
may be a PROM that is alterable only upon activating a
password-protected write-enable function. If the PROM is
the type that requires a UV light for erasure, the password
may control access to a built-in ultraviolet LED. The pass-
word may be equal in length to the single-use keys, or other
length for sufficient security. The password may be provided
in the installation message, encrypted along with the firm-
ware. Alternatively, the password may be hidden in the old
or new firmware, at a location and format specified in the
installation message. For even greater security, the write-
enable password may be split into two halves, in which the
first half of the password is hidden in the new or old
firmware, and the second half is provided, encrypted, in the
installation message. For even greater security, the password
may be encrypted by a second single-use key located
adjacent to the index of the installation message. In each
case, retrieving the password is trivial for the end device, but
essentially impossible for the attacker.

In some embodiments, the installation instructions of the
end device may include receiving and checking the instal-
lation message, turning off the receiver, retrieving the single-
use key according to the index in the message, decrypting
the new firmware, enabling the write-enable feature accord-
ing to the password, copying the new firmware into the
system PROM, erasing all temporary memory such as the
RAM and registers, disabling the write-enable feature,
restarting the receiver, running the boot sequence, and
starting the new operating system. The boot sequence may
also include erasing the RAM again, thereby ensuring that
the end device is restored to a known state after each re-boot.
In addition, the end device may transmit a “completion”
message to the ECU after each re-boot, informing the ECU
that the re-boot has been completed, at which time the ECU
may call for additional self-testing, and/or inform the end
device of the current sub-network parameters and conven-
tions (the “running conditions”, such as which local identi-
fication code to use), since that data may have been erased
during the re-boot. Alternatively, the end device may include
a “retained memory” that is not erased during the boot
sequence. The retained memory may contain the current
running conditions such as ID codes, frequencies, and the
like. Hence the end device can readily determine the running
conditions after a re-boot, for convenience. However, the
retained memory can be erased for security during a system
update, or upon command of the ECU, and restored there-
after by the ECU.

US 12,248,579 Bl

15

In some embodiments, the end device may include a list
indicating which single-use keys have been used, that is, a
“used-key list”. Whenever the end device receives an instal-
lation message, the end device can determine whether the
key indicated in the installation message is already in the
used-key list, and if so, may transmit an alarm to the ECU.
The used-key list may also include the index of each used
key, so the end device can check the index also. The
used-key table may prevent an attacker from using an earlier
key to force a malware installation. The used-key table may
be encrypted as well, thereby preventing hackers from using
a previous installation message and its single-use key to
determine the password, memory configuration, formats,
and so forth. (The used-key list may be unnecessary if each
single-use key is erased from the single-use key table upon
first usage.)

In some embodiments, an end device may prevent a
hacker from invading the end device. The attacker might be
able to eavesdrop on the installation message, but cannot
then repeat the installation with malware, because each key
is used only once and then erased or placed (encrypted) on
the used-key list. In addition, the hacker does not know the
password for unlocking the PROM write-enable feature. If
the attacker tries to invade the installation message, by
injecting malware in place of the new firmware during the
installation message, the attack would fail because such
interference would cause reception faults, thereby causing
the end device to reject the message. Each one of these steps
is readily performed by the most primitive microcontrollers,
but would be very challenging—if not impossible—for a
hacker to emulate. By these means, the wireless updating
procedures disclosed herein may provide very high cyber-
security for updating of end device firmware (and other
processors such as the ECU), thereby providing security on
par with that maintained in the 3GPP network, but without
the complex and computationally demanding prior-art secu-
rity protocols.

In some embodiments, for even greater security, the ECU
may also be configured to prevent an attacker from infecting
the 3GPP network. In a “code-injection” attack, for example,
the attacker conceals executable code in data, such as the
measurement data of an end device, which is sent to the
ECU. However, the ECU may be configured to interpret
every upcast message as raw numerical data or a predeter-
mined answer, and never as executable instructions or
computer code. In addition, the ECU may process the data
it receives before passing it on, such as averaging multiple
measurements or calculating differences between successive
measurements, or other analysis on the data that destroys
any instructions hidden in the data. In addition, the ECU
may be configured to pass only a summary report uplink,
never raw data from the end devices, further protecting the
3GPP network. Thus the ECU protects itself and the larger
network from intrusion. In addition, the ECU may watch for
any indication of hacking, such as an improperly stated
answer or an unrequested sensor message or an unreason-
able data value or other abnormal event. An Al model in the
ECU may analyze those inputs and determine the likely
cause, including hacking. On any suspicious event that may
indicate an attack attempt, the ECU may initiate further
defensive action.

In some embodiments, for even greater security, the ECU
may be configured to obfuscate any injected malware upon
receipt. For example, the end device may be configured to
transmit its measurement data in a format that includes a
couple of additional bits of random noise, embedded in each
message element according to a pseudorandom algorithm.

10

15

20

25

30

35

40

45

50

55

60

65

16

The ECU then uses the same algorithm to extract and discard
the extra bits before processing the remaining bits as proper
data. If a hacker tries to insert code into an upcast message,
the bit extraction step would automatically clobber the code,
thereby defeating the attack. By treating upcast data as data,
and by processing the data before passing it on, and by
deleting the secret extra in the raw data, and by filing
summary reports instead of raw data, the ECU can protect
itself and the 3GPP network, even in the (highly unlikely)
event that one of the end devices has been invaded.

In some embodiments, the ECU may include, in the
installation message, an error-detection code (such as a hash
or digest or CRC or parity construct or the like) of the
as-transmitted installation message, optionally exclusive of
the error-detection code itself. The end device can calculate
the error-detection code based on the as-received version of
the installation message, and compare. If there is a mis-
match, the end device may conclude that there was a
transmission error or that a hacker intervened, or some other
mishap, and may reject the update message. The end device
may then transmit a message informing the ECU of the
rejection, or transmit a NACK which the ECU would
interpret as a rejection. The ECU may then try again, using
a different single-use key. In addition, the ECU may prepare
a second error-detection code, of the new firmware in its
decrypted form, and may include that second error-detection
code in the update installation message (encrypted, along
with the firmware). The end device may then calculate the
second error-detection code of the new firmware after
decrypting, but before installation into the PROM, and
compare to the value provided in the message. Any mis-
match may cause the end device to abort the update and alert
the ECU.

In another embodiment, the ECU may calculate the error-
detection codes of the encrypted and decrypted firmware
versions, but may transmit the installation message without
those values. Upon receipt, the end device may calculate
those values and transmit them back to the ECU. The ECU
can then check them and transmit an ACK if the values are
correct, enabling the end device to finish installing the new
firmware. If any mismatch, the ECU can transmit NACK,
causing the end device to abort the update.

In some embodiments, each end device may include two
separate ROM memories configured for different purposes.
For example, a first PROM may contain the single-use key
table, the boot sequence, and the operating system, while a
second memory may contain the update instructions for
performing the installation. In this version, the end device
operating system includes no updating instructions. Instead,
upon receiving an installation message from the ECU, the
end device processor jumps to the UROM and executes the
installation instructions there. For security, the end device
may be unable to access the second ROM, absent an
installation message from the ECU. The installation mes-
sage may indicate a starting address of the installation
instructions in the second ROM. An advantage of placing the
updating instructions in a separate memory may be that the
system PROM can be completely erased and re-written
during the installation, since the instructions are contained in
the second memory. Execution from a PROM while it is
being updated can be tricky, and in some cases, impossible.
The separate installation instructions can also enable the end
device to recover if an installation is interrupted after the
operating system and the boot sequence have been erased,
by continuing to execute from the second memory. In one
case, the installation instructions may be contained in a
secure memory installed in the end device processor itself,

US 12,248,579 Bl

17

in which case the installation instructions may be executed
from the in-processor memory instead of a second ROM.
The update installation message may provide an authoriza-
tion or a password or other security feature that enables the
processor to begin executing from the second memory or the
in-processor memory.

In some embodiments, the end device may include a SIM
card reader. The SIM card may include a memory containing
the new firmware. In a first version, the new firmware is read
from the SIM card and installed in the PROM. The SIM card
may also include the installation instructions, so that the
processor can execute the installation instructions from the
SIM card memory instead of attempting to execute from the
same PROM that is being updated. The SIM card may then
be withdrawn after the updating, or it may be left in the
device but rendered inaccessible without a password or the
like.

In a second version, the end device may use the SIM card
memory as the main system memory. For example, the end
device processor may execute the boot sequence and the
operating system directly from the SIM card instead of a
separate PROM. In some cases, the end device may have no
PROM at all, continuing to execute exclusively from the
SIM card thereafter. In some cases, the SIM card reader may
have no write function, so that the SIM card memory serves
equivalent to a UROM containing the firmware in an unal-
terable form, yet can still be updated by replacing the SIM
card with another SIM card. Updating then involves physi-
cally replacing the SIM card.

In a third version, the SIM card may contain the single-
use key table. After all keys have been used, a fresh set of
single-use keys may be provided by replacing the SIM card.
In some cases, the SIM card reader may include an erase
feature, by which individual memory locations in the SIM
card memory may be erased or set to zero, in which case
each single-use key can be erased as soon as it is retrieved,
preventing re-use.

In some embodiments, the vehicle may be an aircraft. As
with land-based vehicles, the cybersecurity of aircraft
remains a critical need. Hence, the systems and methods
disclosed herein may be advantageously applied to aircraft
as well as land-based vehicles. In addition, the systems and
methods may further include an automatic collision avoid-
ance system to prevent or minimize collisions between two
aircraft, or between an aircraft and a ground vehicle, or
between the aircraft and a fixed object while taxying. For
example, the automatic collision avoidance system may be
configured to acquire data about proximate objects using
sensors such as cameras, lidar, radar, ultrasound and the like,
and may include a processor configured to predict future
trajectories of the aircraft and the other object, and to alert
the aircraft pilot when a collision becomes possible and/or
imminent. The processor may be further configured to
autonomously perform an emergency evasion maneuver, in
the air or on the ground, to prevent such a collision, when the
pilot’s response to the alerts is insufficient. The processor
may further include an Al model trained to recognize
possible and/or imminent collisions, and/or to calculate a
series of actions (braking, steering, accelerating) to avoid or
at least minimize the collision.

Air Taxis

As an exemplary application of the present principles, the
cybersecurity of air taxis may be considered, since they and
all other aircraft require high security.

Air taxis have gone from a distant pie-in-the-sky concept
with no real assurances of success to a subset of aviation
with enormous potential. This is why companies are invest-

10

15

20

25

30

35

40

45

50

55

60

65

18

ing billions in the development of these air taxis. Just some
of the companies seriously developing air taxis include:
Hyundai, Joby Aviation, Volocopter, Lilium, Archer Avia-
tion, Airbus, Vertical Aerospace, EHang, Kittyhawk, Wisk,
and Beta Technologies.

Dated Feb. 13, 2024 for the Robb Report under ‘Avia-
tion,” Dan Sloat writes an excellent summary as follows:

“They’re coming, faster than you think. The first eVTOL
air taxi is already operating, with a half-dozen others
expected in the next two years.

“Adir taxis will debut this year in places like France, Italy,
South Korea, and Central America. They’re already flying in
China.

“Advanced Air Mobility (AAM) is a global movement to
launch a new mode of transportation using what amounts in
most cases to super-sized, passenger-carrying drones,
known as electric vertical takeoff and landing (eVTOL)
aircraft. While the name is clunky, the concept is quiet and
sustainable: Move people and goods faster and safer than a
car, while producing less noise and carbon emissions than a
helicopter.

“The first air taxis are just getting started, but most
analysts expect a half-dozen to be commercially certified by
2026, and to be part of mainstream urban transport in the
next 10 years. The multi-passenger eVTOLs on this list are
different than one-person electric aircraft used for recre-
ational purposes and regional eVTOLs that will take on
existing commercial airlines. As the name suggests, they are
almost strictly for urban use.

“Aviation is something that roughly 80 percent of the
global population has never experienced. Intracity air travel
is rare, and limited to helicopter travel. But that will all
change with the advent of air taxis. They will be common-
place in large urban centers like New York, London, and
Paris, as well as being critical to easing the ground conges-
tion in megacities like Sao Paulo, Mumbai, and Cairo.

“Ideally, AAM will not only achieve its goal of broaden-
ing the reach of aviation to benefit more people but also
increase the frequency of those benefits. Instead of two
flights per year, imagine a city where many fly twice each
day as part of their commutes.”

Of note is that one forward-thinking leader—Hyundai’s
air taxi subsidiary, ‘Supernal’—plans to revolutionize urban
commuting with air taxis, targeting FAA certification as
early as 2024, and then commercial launch in 2028.

The Hyundai Supernal S-A2 promises seating for five,
120 mph, and 20 to 40 miles of range. Hyundai expects its
air taxis to be piloted initially, but transition to autonomous
operations over time.

Regulatory approval and pilot certification would cer-
tainly become mandatory, if common sense prevails. Indeed,
it would be decidedly unsafe if billionaires and the like with
zero flying experience flit about willy-nilly at all hours of the
day and night in major urban areas, such as New York,
Chicago, Los Angeles, and many dozens of other densely-
populated cities around the globe.

This being said, and with the future of air taxis no longer
in doubt, the cybersecurity embodiments of the present
disclosure are ideally suited for the world of ‘air taxis.’
Companies such as Uber and Lyft—who already have great
experience in offering rides to anyone with a valid credit
card—may lead the charge in having air taxis become a
viable commercial reality. Hyundai has already developed a
commercial relationship with Uber.

International auto manufacturers are now seriously diver-
sifying from their business beyond ground vehicles in a

US 12,248,579 Bl

19

thrust to extend their product line. These include, among
others, Toyota Motor Company, Stellantis, Mercedes-Benz,
and Honda.

GLOSSARY OF TERMS

Terms herein generally follow 3GPP (third generation
partnership project) standards, but with clarification where
needed. Jargon, ambiguous terms, and unhelpful acronyms
are avoided. As used herein, “5G” represents fifth-genera-
tion (including 5G Advanced), and “6G” represents sixth-
generation (and later-generations) wireless technology. A
“3GPP network™ is a network configured according to
standards promulgated by 3GPP (Third Generation Partner-
ship Project). A 3GPP network (or cell or “LLAN” Local Area
Network or “RAN” Radio Access Network or the like) may
include a base station (or “gNB” or generation-node-B or
“eNB” or evolution-node-B or “AP” Access Point or
“PRAS” premises radio access station, among other names)
in signal communication with a plurality of user devices (or
“UE” or User Equipment or user nodes or terminals or
wireless transmit-receive units) and operationally connected
to a core network (“CN”) which handles non-radio tasks,
such as administration, and is usually connected to a yet
larger network such as the Internet. “loT” or Internet of
Things refers to sensors and actuators configured to com-
municate wirelessly. The time-frequency space is generally
configured as a “resource grid” including a number of
“resource elements”, each resource element being a specific
unit of time termed a “symbol period” or “symbol-time”,
and a specific frequency and bandwidth termed a “subcar-
rier”. Symbol periods may be termed “OFDM symbols”
(Orthogonal Frequency-Division Multiplexing) in which the
individual signals of multiple subcarriers are added in super-
position. Thus a resource element, spanning a single symbol
period in time and a single subcarrier in frequency, is the
smallest unit of a message. “C-RNTI” (cell radio network
temporary identification) is an identification code of a user
device. “DRX” (discontinuous reception) refers to devices
going into a low-power incommunicative mode periodically.
“SSB” (synchronization signal block) and “SIB1” (system
information block 1) are system information messages
needed for new user devices to register on a 3GPP network.
“PUCCH”, “PDCCH”, “PUSCH?”, and “PDSCH?” are certain
managed channels of the 3GPP network. “SNR” represents
the signal-to-noise ratio, with no distinction between noise
and interference unless specified. “Random” includes both
“pseudorandom” (according to a formula), and “true ran-
dom” (a physically stochastic bit generator). “ID” stands for
identification. “AI” stands for artificial intelligence. “NOP”
(no operation) is a processor command that causes the
processor to proceed to the next address in the execution
memory. “LBT” (listen before talk) is a collision-avoidance
method wherein a device monitors a channel before trans-
mitting. “SIM” is a subscriber identification module. “LED”
is a light-emitting diode. “UV” is ultraviolet. “ACK” stands
for positive acknowledgement and “NACK” for negative
acknowledgement.

In addition to the 3GPP terms, the following terms are
defined. A “sub-network” is a plurality of end devices
wirelessly communicating with an “ECU” (electronic con-
trol unit), which communicates with a larger network such
as a 3GPP network or the Internet. The sub-network may be
a “PIN” (personal IoT network), or a “CPN” (customer/
corporate premises network) or other collection of wireless
devices, with limitations explained below. The sub-network
may be configured in a “star” or “hub-and-spoke” architec-

10

15

20

25

30

35

40

45

50

55

60

65

20

ture in which multiple end devices communicate with a
single ECU device. An “end device” is a sensor or actuator
tool, triggered by a processor, which uses a transceiver to
communicate wirelessly (or maybe wired) with a single
ECU device. As used herein, an “ECU” or “hub device” is
a member, manager, and gateway device of a sub-network of
end devices, and also a user device of a larger network, such
as a 3GPP network of the vehicle. If the vehicle is a
mass-transit vehicle such as a train or airplane or ship, the
private phones and computers of passengers may also log
into the internal base station as transient user devices in the
usual way. The ECU may be configured to communicate
with all of the end devices of its sub-network on restricted
links, and also communicate with a base station on regular
5G/6G channels. A “restricted link™ is an exclusive commu-
nication link between the ECU and one end device. A
restricted link may support only certain types of messages;
for example, the end device may transmit only data to the
ECU, and the ECU may transmit only commands to the end
devices. “Upcast” refers to unicast messages from an end
device to its ECU on a restricted link, and “downcast” refers
to unicast messages from a ECU to a particular one of its end
devices on a restricted link. “LC-IoT” stands for low-cost
low-complexity low-current low-crosstalk Internet of
Things. A “higher authority” refers generally to any entity
responsible for overall direction of a network, such as the
owner. The “bottom” of a memory refers to the lowest
location address such as zero, and the “top” of the memory
refers to the highest location address. “Re-boot” means
running the boot sequence.

Although in references a modulated resource element of
a message may be referred to as a “symbol”, this may be
confused with the same term for a time interval (“symbol-
time”), or a composite waveform or “OFDM symbol”, or
each character in a demodulated message, among many
other things. To avoid ambiguities herein, each modulated
resource element of a message is referred to as a “modulated
message resource element”; or more simply as a “message
element”, in examples below. A “demodulation reference” is
one or more modulated “reference resource elements” or
“reference elements” modulated according to the modula-
tion scheme of the message and configured to exhibit levels
of the modulation scheme (as opposed to conveying data). A
“short-form” demodulation reference is a demodulation ref-
erence that exhibits only selected amplitude or phase levels,
such as the maximum and/or minimum amplitude or phase
levels, from which the receiver can determine any interme-
diate levels by calculation. A message may be transmitted
“time-spanning” by occupying successive symbol-times on
a single subcarrier, or “frequency-spanning” by occupying a
single symbol-time on multiple subcarriers, whereas “TDD”
(time-division duplexing) and “FDD” (frequency-division
duplexing) pertain exclusively to duplexing of message
pairs.

As mentioned, a “PROM” (programmable read-only
memory) can be changed only under certain circumstances
such as with a certain voltage applied, a “UROM” (unalter-
able read-only memory, sometimes called NVROM or non-
volatile read-only memory) cannot be changed, a “SD-
ROM” (self-destruct read-only memory) is a read-once
memory that erases each entry as soon as it is read. As used
herein, “ROM” (read-only memory) includes all of those
types. In contrast, “RAM” (random-access memory) can be
read and written routinely. RAM is generally transitory and
volatile, while ROM is usually non-transitory and persistent
through power cycles. A “hacker” is anyone attempting
unauthorized entry into a network.

US 12,248,579 Bl

21
FIGURES

Turning now to the figures, the following examples show
how sub-networks in a vehicle can provide sufficient secu-
rity, without significantly impacting the vehicle’s 3GPP
network.

FIG. 1 is a schematic showing an exemplary embodiment
of'a vehicle including ECU electronic control units, accord-
ing to some embodiments. The vehicles referred to herein
may be ground vehicles such as an automobiles, trucks,
busses, and trains; waterborne vehicles such as boats and
submarines; and airborne vehicles such as helicopters and
airplanes and air taxis, while in flight or while taxying. As
depicted in this non-limiting example, a vehicle 100
includes a 3GPP-compliant network including an internal
base station 101, an ADAS (automatic driver assistance
system) ECU (electronic control unit) 102, an engine ECU
103, another ECU 104 controlling lights and other things,
and an infotainment ECU 105. The internal base station 101
communicates wirelessly 107 with a fixed-site base station
106, or on backhaul with a fixed-site core network. In
addition, the infotainment ECU 105 may receive public
broadcast transmissions 109 (dash), which generally present
negligible security threat, from satellites 108 and other
public sources, independently of the internal base station
101.

In this topology, the internal base station 101 and the ECU
units communicate wirelessly according to 5G or 6G tech-
nology, on managed uplink and downlink channels (dou-
blewide arrows) using very low transmission power corre-
sponding to the short propagation distances involved. Wired
links (not shown) may alternatively be provided between an
ECU and the internal base station when convenient. The
internal base station 101 may be configured to manage the
vehicle’s operation, and to serve as a central communication
link between the vehicle 100 and the rest of the world.
Requiring all communications (other than public broadcast-
ing and the like) to pass through the internal base station 101
may provide cybersecurity and better control.

The topology is based on an internal 5G/6G private local
network, centered on the internal base station 101, and
communicating with ECU user devices that control each
major subsystem of the vehicle—that is, a “network star
topology”. Likewise, each ECU is the manager and gateway
of a sub-network of end devices, each end device consisting
of a sensor or actuator along with necessary processing
power and a wireless transceiver, configured to communi-
cate only with a single ECU, which may be termed a
“sub-network star topology”. Optionally, one ECU may
manage a number of “sub-ECUs” which each have their
sub-network of end devices. The overall system may be
termed a “nested hub-and-spoke complex”, or more simply
as “stars-within-a-star”. The depicted topology may thereby
provide much-needed simplification, reduced manufacturing
costs, ease of maintenance, and greatly enhanced cyberse-
curity in next-generation software-defined vehicles.

FIG. 2 is a schematic showing an exemplary embodiment
of sub-networks connected to a larger managed network,
according to some embodiments. As depicted in this non-
limiting example, a vehicle-based 3GPP network 200
(dashed circle), such as a 5G or 6G based network, is shown
with three sub-networks 203 (dotted enclosures). Each sub-
network 203 includes several end devices 204 (circles) in
communication with an ECU 202 (squares) via a wireless
restricted link 205 (dashed arrow) or a wired restricted link
215 (plain arrow). The ECUs 202 may also directly control
a sensor/actuator tool 214 by itself, using a wired restricted

10

15

20

25

30

35

40

45

50

55

60

65

22

link 215 as shown. The ECU 202 can also communicate with
end devices 204 using a restricted CAN bus 207. An ECU
202 may also control multiple sub-ECUs (not shown) in a
tree-like organization.

The 3GPP network 200 includes an internal base station
and core network 201, communicating with the various ECU
202 via 5G or 6G managed channels 206 (doublewide
arrows). The internal base station or core network 201 also
communicates, using an external Doppler-corrected wireless
link 208, with an external fixed-site base station as a user
device, or with the fixed-site core network 209 on backhaul.
In the depicted embodiment, each ECU 202 manages the end
devices 204 of its sub-network 203. The ECU 202 transmits
instructions to the end devices 204 on the restricted links 205
215 207, and also receives data messages from the end
devices 204 on the restricted links 205 215 207. The base
station and core network 201 manage the 3GPP network 200
via the 5G/6G channels 206. Each ECU 202 serves as a
gateway between the end devices 204 and the internal base
station 201. The 3GPP network 200 may send a message to
one of the end devices 204 indirectly, by transmitting the
message on a 5G/6G channel 206 to the ECU 202, which
then transmits a downcast instruction to the end device 204
on a restricted link 205 215 207. To report data back to the
3GPP network, the end device 204 first transmits the infor-
mation upcast to the ECU 202 on the restricted link 205 215
207. The ECU 202 may send the data to the base station, or
more commonly may send only a summary or status report
to the base station when required. By managing the end
devices 204 largely autonomously, the ECU 202 may
thereby relieve the base station 201 of detailed real-time
sensor management responsibilities, which the ECUs 202
are better positioned to handle. In special circumstances,
however, the 3GPP network 200 may monitor and direct
certain end devices individually, but still communicating
exclusively through the ECU 202 gateway, for security.

By avoiding direct communication between the end
devices 204 and the base station 201, the 3GPP network 200
is protected from a wide range of cyber attacks. Even in the
unlikely circumstance that one of the end devices 204 is
somehow compromised, the ECU 202 and the larger net-
work 200 remain protected by the tightly controlled proto-
cols of the restricted links 205 215 207, as well as the cyber
protections provided by cybersecurity software in the ECU
202 as a regular user device of the 5G/6G managed network
200.

FIG. 3 is a schematic showing an exemplary embodiment
of communication between an end device, an ECU, an
internal base station, and an external base station, according
to some embodiments. As depicted in this non-limiting
example, a vehicle 300 includes a vehicle-wide 5G/6G
network with a base station 301 and user devices as ECUs
302. A wide variety of sensor/actuator end devices ED 304
communicate with their ECU 302 via restricted links
(dashed arrows). In this case a restricted downcast link 3051
is restricted to carry only instructions to the end device 304,
and a restricted upcast link 3052 is permitted to carry only
raw measurement data or pre-configured answers such as an
acknowledgement to the ECU 302. In addition, the ECU 302
can communicate with a wired end device on a CAN bus,
including upcast CAN links 3072 and downcast CAN links
3071. The vehicle-wide 3GPP network, centered on base
station/core network BS/CN 301, communicates with each
user device/ECU 302 via managed 5G/6G channels, such as
PDSCH and PDCCH downlinks 3062 and PUSCH and
PUCCH uplinks 3061. Not shown are broadcast channels,
random access, and a few other special-purpose channels.

US 12,248,579 Bl

23

The base station/core network 301 also communicates with
a fixed-site external base station/core network 309 via a
Doppler-corrected communication link 308. For example,
the internal base station 301 may present itself as a user
device of the remote fixed-site base station 309, or the
mobile core network may connect with the fixed-site core
network on backhaul, among other possibilities.

The end devices 304 do not communicate directly with
the base station 301, nor with any wireless entity other than
the ECU 302 which they are assigned to. The end devices
304 receive instructions from, and send measurement data
to, their ECU 302 only, in this version. The ECU 302 is
responsible for direct management of its end devices 304,
and for initial processing of the measurement data, and for
passing the data (usually in summary form, or otherwise
processed) to the base station 301. In this example, the ECU
302 communicates instructions to the end device 304 in
real-time, and receives data or pre-configured answers from
the end device 304. The sub-network operates largely
autonomously from the 3GPP network in this case.

The example also shows how the 3GPP network may be
protected from attack coming through a sub-network. Even
if the attacker manages to corrupt one of the end devices
304, the attacker is then able, at most, to transmit bogus
measurement data or bogus acknowledgements to the ECU
302, since the ECU 302 is programmed to treat everything
coming from the end device 304 as raw measurement data
or pre-configured messages such as acknowledgements and
alarms. The ECU 302 may be configured to perform aver-
aging or trend extraction or other processed conclusions
(collectively termed “summary data™) based on the raw
measurement data, and pass the summary data to the base
station 301 if sufficiently interesting. The ECU 302 may also
be configured to check the measurement data for signs of
corruption such as unexpected measurement values, among
other tasks. The ECU 302 generally does not provide the raw
data unless the base station requests it. Each of these steps
presents a high barrier to the attacker, thereby protecting the
ECU 302 and the larger network from infection. No execut-
able code is ever transferred upcast (unless an attacker does
it). If a hacker succeeds in sending executable code, the ECU
302 treats it as raw data for analysis, thereby rendering the
hidden code unintelligible and harmless. The ECU 302 does
not execute anything received from the end device 304
under any circumstances, in this embodiment. In addition,
the ECU 302 is assumed, in this example, to include the
same strict cybersecurity protocols as any user device of a
5G/6G network, which generally protects against mistakenly
executing data as computer code. In addition, the base
station 301 receives only the twice-processed summary data
from the ECU 302, thereby destroying any hidden code and
further shielding the base station 301 from infection. In
addition, the ECU 302 and the base station 301 are pro-
grammed to recognize improbable data values and other
signatures of hacking, thereby triggering strong defensive
actions such as re-booting and self-testing. By these multiple
shields, the restricted upcast link 3052 acts as a selective
firewall protecting the ECU 302 by enabling only data
upcast, and the ECU 302 provides further protection by
treating all upcast messages as data or pre-configured
replies, thereby effectively protecting the larger network.

FIG. 4 is a schematic showing an exemplary embodiment
of a sub-network communicating with a larger managed
network, according to some embodiments. As depicted in
this non-limiting example, an end device 404 of a sub-
network communicates with an ECU 402 via a restricted
link 405, and the ECU 402 communicates with an internal

10

15

20

25

30

35

40

45

50

55

60

65

24

base station 401 via a 5G or 6G managed channel 406. The
internal base station 401 communicates with an external
base station or core network 409 on Doppler-corrected
wireless links 408 as needed.

The end device 404 includes a sensor or actuator tool
4041 controlled by a micro-controller 4042 which executes
instructions contained in a read-only memory 4043. The
micro-controller 4042 includes, or is connected to, a radio
transceiver 4044 with an antenna 4045 configured for
receiving commands and transmitting data to the ECU 402
via the restricted link 405.

The ECU 402 includes a processor 4022 with RAM
memory 4021 (and optionally ROM or other memory, not
shown). The processor 4022 includes, or is connected to, a
transceiver 4023 which has a first antenna 4024 configured
to communicate with the end device 404 via the restricted
link 405. The ECU 402 is also configured to communicate
with the internal base station 401 via the managed 5G/6G
link 406. A second antenna 4025 may be required for the
5G/6G communications.

In some embodiments, the end device processor 4042
may be configured to read all addresses in the ROM 4043 as
execution instructions only, and may be prevented from
reading any address in the ROM 4043 as data (other than a
specific single-use key, when so ordered by an installation
message). Likewise, the processor 4042 may be configured
to read all addresses in a RAM (if present) as data, and may
be prevented from reading any RAM addresses as execution
instructions. These security measures may prevent a hacker
from executing malware in RAM, and may also prevent the
hacker from perusing the firmware in the ROM 4043.

In some embodiments, the ECU processor 4022 may
include an Al model trained to recognize problems, such as
imminent equipment failure, hacker signatures, production
bottlenecks, and the like. The Al model may be further
configured to recommend responsive actions such as integ-
rity tests that the end devices may perform. The Al model
may also diagnose the problem and recommend mitigation.

FIG. 5 is a flowchart showing an exemplary embodiment
of a procedure for adding an end device to an existing
sub-network, according to some embodiments. The flow-
chart items may be executed in any order. As depicted in this
non-limiting example, an end device joins a sub-network
without compromise of cybersecurity.

At 501 a human enters a vehicle and starts it. At 502, the
vehicle’s 3GPP network internal base station registers the
various ECUs in the vehicle as user devices on the internal
base station. At 503, optionally, the internal base station or
core network seeks and logs onto a fixed-site external base
station. At 504, the internal base station manages the vehicle
ECUs to control the engine, provide infotainment, monitor
surrounding traffic, watch for hazards, and execute ADAS
interventions when needed.

At 505, the human’s cell phone seeks entry into the
internal base station as another user device. In this version,
a new ECU can join the internal base station only upon the
human providing a physical enablement such as a button
press. Accordingly, the internal base station, or one of its
ECUs, displays a notice in view of the human, asking
whether the human allows the new device to join. In another
embodiment, the internal base station, or one of its ECUs,
may recognize the cell phone based on previous registra-
tions, and therefore may admit the cell phone without the
physical enablement.

At 506, a hacker probes the internal base station, seeking
entry but without proper credentials. Again the vehicle
allows the human to decide whether to admit, but this time

US 12,248,579 Bl

25

the human declines the unknown device. At 507, the hacker
tries again, this time by attempting to take over or control
one of the end devices. However, the end devices are
configured to recognize only certain pre-configured com-
mands and to provide only measurement data or pre-con-
figured replies in response, optionally with the aid of an Al
model to analyze suspicious activity. The end device pro-
cessor detects the out-of-spec signaling from the hacker and,
in response, re-boots by running the boot sequence, which
also erases all RAM and processor registers of the end
device, thereby ejecting the hacker. Optionally, not shown,
the end device may transmit an alarm message to its ECU
informing of the suspected attack, and/or transmit an all-
clear message after re-booting and optionally performing
self-tests. Optionally, the ECU may assist in analyzing the
suspicious activity, using algorithms such as another Al
model in the ECU, to further discriminate equipment prob-
lems from a cyber attack. In other embodiments, the end
device may simply ignore the hacker’s unsigned messages,
as long as the hacker has not influenced the end device’s
memory or actions.

At 508, the vehicle arrives at the destination. However,
some of the ECUs or end devices are due for firmware
updating. In this example, all updates and other firmware
alterations are withheld while the vehicle is in transit, for
safety. After the vehicle has reached the destination and is
put in Park, but before the vehicle power is turned off, the
vehicle requests the updating (using a visible notice or
voice-like computer speech, for example). The human then
provides the physical enablement (button press) to initiate
the update, after which the vehicle completes the installation
securely, performs various tests, and then turns off the
power.

In addition, after the updating, each ECU may require
each of its end devices to perform self-tests and report. For
each self-test, the ECU may measure the amount of time
required by the updated end device to complete the test and
reply, thereby detecting any change in response time as
possible evidence of a security breach. Such a diagnostic
may require asynchronous transmission of the reply message
by the end device, in order to obtain sufficient time precision
to detect a firmware alteration. The ECU may instruct the
other end devices of the sub-network to remain silent until
after the self-tests have been completed and reported, to
avoid cross-traffic delays.

In a similar way, the internal base station may require
each ECU to perform integrity tests after updates, or at other
times, to ensure that the ECU updates were performed
correctly and to detect irregularities before they can do
significant harm. The base station may also measure the time
required for the ECU to complete each integrity test and
report. However, to obtain sufficient time measurement
precision, the internal base station may permit the ECU to
transmit the result asynchronously and grant-free, as soon as
the test is done, instead of waiting for the next symbol
boundary or other delays. The base station may instruct the
other ECUs to remain silent until the integrity test is done,
or at least during an interval when the reply is expected.

FIG. 6 is a schematic showing an exemplary embodiment
of two end devices in a sub-network communicating with an
ECU, according to some embodiments. As depicted in this
non-limiting example, a first end device 601 and a second
end device 602 of a sub-network are in communication with
an ECU 603, which is in communication with an internal
base station 604. Restricted-link communications in the
sub-network are shown dashed, and managed 5G/6G com-
munications in the 3GPP network are shown as doublewide

10

15

20

25

30

35

40

45

50

55

60

65

26

arrows. Time proceeds downward in the figure. However,
items may be implemented in any order or omitted.

At 611, the internal base station 604 transmits a message
631 to the ECU 603 indicating that there is tight traffic
ahead. At 612, the ECU 603 transmits a downcast instruction
632 to the first end device 601 requesting a measurement of
the distance to the cars (or aircraft or ships, etc.) ahead. The
downcast instruction 632 causes the first end device 601 to
make a proximity measurement and, at 613, to transmit an
upcast data message 633 to the ECU 603 indicating the
measurement value.

At 614, the ECU 603 transmits a downcast message 634
to the second end device 602, instructing it to actuate a
braking actuator or a reduction in propulsion power. At 615,
the second end device 602 does so, and then transmits an
upcast message 635 indicating that the actuator was suc-
cessfully actuated.

At 616, the first end device 601 detects that the proximity
is changing too rapidly (that is, the rate of change exceeds
a predetermined limit) and transmits an alarm message 636
to the ECU 603. At 617, the ECU 603 transmits an imme-
diate downcast message 637 to the second end device 602 to
apply the braking actuator harder (or to initiate an evasive
maneuver), and at 618 transmits a message 638 to the
internal base station 604 warning of the growing hazard and
to expect a sudden speed reduction.

Later, at 619, a hacker attempts to intrude into the first end
device 601, as indicated at 639, thereby causing the first end
device 601 to transmit a bogus data upcast message 640 to
the ECU 603 at 620. The ECU 603 receives the bogus
message 640, notes that it is an unsolicited message and is
not an alarm, and therefore is suspicious. Alternatively, the
ECU 603 may determine that the message 640 is meaning-
less, or in violation of proper sub-network formats, or using
an unassigned identification code, among many other fea-
tures that the ECU 603 could check. Upon determining that
there is something amiss with the second end device 602, the
ECU 603 then transmits, at 621, an uplink message 641 to
the base station 604 requesting maintenance of the first end
device 601 (or requesting emergency landing in the case of
an infected aircraft in flight). In addition, to ensure that no
infection can propagate to the 3GPP network, the ECU 603
may inhibit all further communications with the first end
device 601. If the ECU 603 suspects that itself is also
compromised, the ECU may self-quarantine by ceasing all
further uplink transmissions to the base station (but keeping
the receiver open for instructions), until signaled by the
3GPP network that the problem has been resolved.

Alternatively, the ECU and the base station may collabo-
rate in identifying the intrusion and determining what to do
about it. For example, the base station may include a
versatile Al model trained in interpreting suspicious mes-
sages and other signs of a cyber attack, and selecting an
appropriate response, such as quarantining the end device or
running integrity tests.

Optionally, the ECU 603 may warn the internal base
station 604, in the uplink message 641, to handle the uplink
request message 641 with care, since the sub-network may
be infected. In that case, the internal base station 604 may
quarantine the uplink message 641, or erase it after regis-
tering the information. The internal base station 604 may
also quarantine the ECU 603, and therefore the entire
sub-network, until the problem has been resolved (assuming
the vehicle can be operated safely without it).

Alternatively, after discovering irrational behavior of the
first end device 601, the ECU 603 may cease all transmis-
sions to the internal base station 604, and instead may

US 12,248,579 Bl

27

instruct 642 the first end device 601 to re-boot at 622, which
it does at 623 and reports 643 to the ECU. In addition, the
ECU may order all of the end devices in its sub-network to
re-boot. Each end device would then re-boot from its ROM,
and clear all registers and RAM in each end device, thereby
erasing any presence of the hacker in the sub-network. Only
after verifying that the sub-network is infection-free at 624,
the ECU 603 may then transmit an uplink message 644 to
the base station 604 informing it of the events and the
successful restoration, in this example. At 625, the internal
base station 604 re-checks the test results and confirms 646
that the first end device 601 is infection-free. Then, at 626,
the ECU 603 instructs 645 the first end device to resume
operations.

However, if the first end device 601 continues to act
erratically after its re-boot, or fails other system checks that
the ECU 603 may order, the ECU 603 may request main-
tenance of the first end device 601 upon the next garage
opportunity (or upon landing, or reaching port, etc.). In the
mean time, the ECU 603 may contrive a workaround using
other end devices substituting for the first end device 601 if
possible.

FIGS. 7A and 7B are schematics showing an exemplary
embodiment of sub-network features that prevent various
types of wireless cyber attacks, according to some embodi-
ments. As depicted in this non-limiting example, the most
common hacking attack methods 701 and 711 are listed on
the left, and the features of the disclosed sub-networks that
negate those threats are listed on the right 702 and 712.

For example, the first threat type is “Arbitrary Code
Execution” in which the attacker injects malware into the
victim’s execution memory, and the processor executes it.
However, as indicated on the right, the end devices disclosed
herein defeat that type of attack because they execute code
from ROM only, which no attacker can alter. The attacker
might conceivably inject malware into RAM of the end
device, but if the processor is configured to execute only
from ROM, never from RAM, then the attack fails. In
addition, the firmware that prevents the operating system
from executing RAM instructions may also be contained in
ROM or hard-wired in the processor, thereby preventing the
attacker from changing the “execute only from ROM”
feature.

The other threats such as Backdoor, Advanced Persistent
Threat, Zombie, Rootkit, and Bootkit attacks, are defeated
for the same reasons—the end device boots from ROM and
executes only from ROM. In addition, the end device can be
configured to erase all RAM and registers and everything
else that an attacker could conceivably alter, upon each
re-boot, thereby wiping out the attacker’s entire presence. As
mentioned, the end device can be configured to re-boot
frequently, such as once per second, minute, or hour, or upon
transmitting each upcast message, or after each measure-
ment, or after detecting any suspicious behavior, or at
random times, to further frustrate the attacker.

The other attack types in the list have similar protections.
For example, Keyloggers that record keystrokes are defeated
because the end devices have no keyboard and no keys.
Privilege Escalation, in which the attacker adds to its privi-
lege status, is defeated because the end devices have no
privilege structure. Shellcode attacks, in which the attacker
starts a new shell or thread, are defeated because the end
devices do not use shells or threads; they only execute
sequential pre-configured ROM code, and only in response
to an ECU instruction. Cryptojacking fails because the end
devices don’t use crypto. Email fraud, Spoofing, and Phish-
ing attacks are useless because the end devices have no

10

15

20

25

30

35

40

45

50

55

60

65

28

email. Screen Scraping (recording information displayed on
a user’s screen) won’t work because there is no user
involved with the end devices, and anyway the end devices
have no screen. All of the attacks involving the Internet are
moot because the sub-network is not on the Internet. The
remaining attack types are also defeated in a similar way, as
indicated on the right side of each item.

In each case, a determined hacker may at most succeed in
distorting the sensor data of an end device, or vandalistically
triggering an actuator, but this is a trivial annoyance limited
to one end device, since all wider infection is prevented by
the features listed. In addition, such a limited intrusion may
be readily eliminated by a re-boot of the affected end device.
The infection goes no farther.

The attack is generally inconsequential if the infection
cannot remain long-term in the end device and cannot
penetrate into the ECU. All of the attack types listed in
FIGS. 7A and 7B fail to infect the ECU, and thus the 3GPP
network, for the reasons shown 702 and 712. Hence the
disclosed sub-networks are fully cybersecure by 3GPP stan-
dards, despite the end devices having none of the advanced
cybersecurity software that the 3GPP user devices (includ-
ing the ECU) are required to implement.

FIG. 8 is a flowchart showing an exemplary embodiment
of a procedure for detecting and mitigating a cyber attack on
a sub-network, according to some embodiments. The flow-
chart items may be executed in any order. As depicted in this
non-limiting example, the ECU detects the attack based on
irregular responses from the infected end device, or a
periodic integrity test, and takes steps to contain and elimi-
nate the problem, while protecting the 3GPP network.

At 801, a hacker intrudes into one of the end devices.
(This is highly improbable since the end devices are con-
figured to boot from ROM and execute from ROM, obeying
commands only from the ECU, and transmitting only mea-
surement data back to the ECU. There is scarcely room for
a hacker to do anything to the end device except interfere
with the measurement data, which accomplishes nothing.
Nevertheless, in this example, we assume the hacker has
somehow gotten into one of the end devices.)

At 802, the end device provides incorrect measurement
data due to the effects of the hacker, or transmits an upcast
message with a format error, or transmits an unrequested
result, or other unexpected behavior. Alternatively, at 803,
the end device may perform self-tests periodically, or the
ECU may order it. The self-tests may include calculating a
hash or parity construct of the ROM or RAM of the end
device, among many other tests described elsewhere herein,
and others. The end device transmits the results to the ECU
for checking. At 804, the ECU becomes suspicious due to
the erratic results, and quarantines the end device by sup-
pressing or ignoring communications from the end device.
In addition, the ECU may inform the vehicle 3GPP network
of'the suspected problem. To prevent spread of the infection,
the message from the ECU to the internal base station may
be a pre-determined alarm message, as opposed to some-
thing that the hacker may have planted, and certainly not the
bogus data that the infected sensor provided (unless the base
station requests it for forensic analysis). After that, the ECU
may withhold further uplink messages to protect the 3GPP
network. Without communications, a cyber attack cannot
spread.

At 805, the ECU and the internal base station collaborate
in checking test results, determining whether they indicate a
malfunction or an attack, and how to proceed. In other
embodiments, the ECU may be configured to perform such
tasks autonomously. The ECU and/or the base station, may

US 12,248,579 Bl

29

include an Al model trained in detecting signatures of a
cyber attack, noise, interference, and sensor failure, based on
the available observations including signals picked up by the
ECU. At 806, the ECU orders the end device to re-boot and
report. At 807, the ECU exercises the suspected end device
by transmitting instructions and analyzing the resulting data
messages. For example, the ECU may require the end device
to perform the same measurement repeatedly to check for
excessive noise. The ECU already knows the correct value
of each test, but the end device does not. The ECU can then
compare the reported answers with the correct values, and
thereby determine whether the firmware of the end device
has been altered. The ECU may also measure the time
interval required for each of the self-tests, and compare to
previously-determined intervals for the same tests. The ECU
can include an Al model trained to diagnose the problem,
including a cyber attack, and to recommend remedial action.
The Al model may further analyze those results, which may
reveal further information about the attack, such as confirm-
ing the presence of the hacker, clarifying the type and extent
of the intrusion, and identifying which capabilities remain
within the end device’s control. In some embodiments, the
end device may be capable of doing its own integrity checks,
and may be able to do so despite the hacker’s interference.
For example, the end device may be able to analyze its test
results and report its own status as, for example, “likely
infected”. The end device processor may include another
Al-based model, sized for the small micro-controller and
trained to discriminate attack signatures from equipment
problems, based on sensor data and integrity test results.

At 808, the ECU determines whether the results indicate
the infection is gone. At 809, test results are all ok, so the
ECU lifts the quarantine, resumes normal operations in the
sub-network, and files a report with the internal base station.
At 810, on the other hand, the end device continues to fail
one or more integrity tests, even after a clean re-boot from
ROM. This may mean that the hacker has somehow survived
the re-boot, or has regained entry after the re-boot, or that the
end device is malfunctioning, or other pathological condi-
tion. Therefore, the ECU may make the quarantine perma-
nent, sever the restricted link, and warn the larger network
of the problem, and request maintenance for the end device.
At 811, the ECU attempts to continue performing the
assigned sub-network functions without the infected end
device, by drawing on other end devices to cover for the
quarantined unit, if possible. For example, the ECU may
request additional temperature measurements from other
sensors near the malfunctioning one, and may interpolate to
determine the likely temperature at the location of the
malfunctioning end device. Optionally, at 812, the ECU or
the 3GPP network may request assistance from other sources
in dealing with the cyber attack. For example, the vehicle’s
base station may use the Internet to find advice and examples
from national cyber databases and federal agencies that may
be available to help.

In some embodiments, each end device may be pro-
grammed to perform its own tasks, and also may be pro-
grammed to perform the tasks of other end devices when so
commanded. This may enable the ECU to enlist the help of
other end devices when one of them is compromised. In
other embodiments, each critical end device may be paired
with a second end device, closely proximate, and configured
to perform the same function when needed. For example,
when one end device is taken off-line due to hacking or
failure or whatever reason, the other end device with redun-
dant capabilities can be ordered to perform the missing

10

15

20

25

30

35

40

45

50

55

60

65

30

functions, and thereby enable the overall operation to con-
tinue until the damaged or corrupted unit is replaced.

FIG. 9 is a schematic showing an exemplary embodiment
of various formats of messages between an end device and
its ECU in a vehicle, according to some embodiments. As
depicted in this non-limiting example, each message on a
restricted link, between an end device and its ECU, may be
configured according to a predetermined format such as
those shown in the figure. The messages may be time-
spanning or frequency-spanning, or both.

Format-1 depicts an internal sub-network message includ-
ing the local identification 912 of an end device, then a
single-bit indicator 915 set to 0 or 1 indicating whether the
message is upcast or downcast, followed by a payload 916.
The same format can be used for both upcast and downcast
messages. For downcast, the end device ID 912 is the
intended recipient and the payload section 916 is an instruc-
tion such as “take a measurement”; if upcast, the ID indi-
cates the transmitting end device, and the payload is the
measurement value or status message. Format-1 does not
include the ID code of the ECU, since in a star topology, all
messages that the ECU did not send are intended for the
ECU, since there are no other options. Likewise, all down-
cast messages are transmitted by the ECU. Absent conflict
with another sub-network, the ECU ID may not be needed.
As mentioned, close vehicle-vehicle proximity is expected
to be brief and infrequent, and therefore address conflicts are
expected to rarely be an issue, and when it does occur, the
ECUs have many options for mitigation as discussed above.

Format-2, on the other hand, includes the ECU identifi-
cation, thereby avoiding address conflicts when another
sub-network is within radio range. Two vehicles with in
which the sub-networks happen to use some of the same
local identification codes, and temporarily within radio
range of each other, may mistakenly receive each other’s
messages, leading to address conflicts. Therefore, in Format-
2, the ECU is identified in each upcast or downcast message,
thereby specifying explicitly the sub-network involved, and
resolving the problem.

In the depicted example, a message according to Format-2
starts with a demodulation reference 921 “demod”, for
demodulating the message. The demodulation reference 921
may be a short-form demodulation reference, which exhibits
two modulation levels, from which any remaining levels can
be determined by interpolation. The abrupt transition
between the two modulation levels of the short-form
demodulation reference may serve as a timestamp point or
phase-tracking reference signal. The recipient (or any other
member of the sub-network) may receive the demodulation
reference 921, and may adjust its time-base according to the
timestamp point, thereby synchronizing with the ECU and,
by extension, with the vehicle’s 5G/6G network. The local
ID of the end device 923 and the ECU 924 are then followed
by the message payload 926. Messages intended for one
sub-network that are received by another sub-network may
be ignored as soon as the recipient determines, from the
ECU identification code 924, that it is listening to the wrong
sub-network.

The example shows the end device identification code
placed before the ECU identification code for both upcast
and downcast. In a second version, upcast messages may
place the end device identification first, followed by the
ECU identification, whereas downcast messages may place
the ECU first. Hence, in that case, the transmitting entity
comes first. In a third version, the ECU ID may be first in
upcast messages, and the end device ID first for downcast,
thereby identifying the receiving entity first. In a fourth

US 12,248,579 Bl

31
version, both upcast and downcast messages may identify
the ECU first, followed by the end device ID, thereby
identifying the sub-network first. Artisans may devise other
arrangements of the ID codes in sub-network messages, after
reading this disclosure, without departing from the prin-
ciples herein.

The example shows a demodulation reference which may
include an abrupt phase or amplitude change at a particular
time, between the first and second portions of the short-form
demodulation reference, thus providing a useful timestamp
point from which each end device may synchronize with the
ECU. For example, the ECU can first calibrate its time-base
according to the 3GPP network using 5G/6G protocols, and
can then transfer that timing to the sub-network by trans-
mitting timestamp points periodically. The timestamp point
may be a single symbol-time of transmission or, for greater
precision, a sudden change of modulation (such as the
sudden change in the middle of a short-form demodulation
reference), from which the end devices can synchronize its
time-base. In some cases, higher bandwidth may be neces-
sary to sharpen the time resolution, such as briefly switching
to 30, 45, 60, or 75 kHz bandwidth, or a higher bandwidth,
for the brief demodulation reference. If, however, the trans-
mission is restricted to 15 kHz bandwidth, the end devices
can still obtain precise timing by correcting the measured
timestamp time analytically to account for the distortions
due to the bandwidth limitation. By either method, the end
devices can synchronize with the ECU. In some embodi-
ments, sub-network communications are required to obey
the frame schedule of the larger network by modulating each
message element of each upcast or downcast message within
the symbol boundaries of the larger network. In addition, by
comparing successive timestamp points, the end devices can
also calibrate their frequency to the ECU, and ultimately to
the larger 3GPP network. The message formats of this
example may thus provide sufficient synchronization of the
sub-networks, without the complex synchronization proce-
dures required for 3GPP communications.

Format-3 begins with an “initial demod” 931 demodula-
tion reference, and ends with a “final demod” 937 at the end
of the message. The initial and final demods may differ in,
for example, the order of two exhibited modulation levels,
so that the recipient can readily determine the start and end
of the message. In addition, the recipient can calibrate the
modulation levels of the message according to the received
modulation values of the demods, thereby enhancing reli-
ability as well as synchronization timing.

After a short gap 932 of no transmission, indicated here
and elsewhere as a short box, the message then includes the
local ID of the end device 933. A set of flags 935, or
single-bit indicators, may indicate parameters such as
whether the message is upcast or downcast, the presence or
absence of the ECU identification in that message, the
presence or absence of the final demod at the end of the
message, whether part of the message is encrypted, and
other parameters. The payload 936 follows, then another
gap, then the final demodulation reference 937. The two
demodulation references 931, 937 may assist the receiver in
demodulating the message. The first gap 932, following the
initial demod 931, may provide time for the recipient to
adjust its timing and modulation phase levels according to
the modulation levels exhibited in the initial demod 931,
before the message begins. The flags 935 may disambiguate
the message parameters.

The ECU may transmit or broadcast a message to its end
devices, indicating which format to use. When traffic is light
and no address conflicts are detected, the ECU may allow

10

15

20

25

30

35

40

45

50

55

60

65

32

Format-1. If conflicts occur, the ECU may switch to Format-
2, or to Format-3 to mitigate a noisy environment.

Format 4 is for broadcast messages from the ECU to all
of'its end devices in a particular sub-network. In the depicted
case, the broadcast message begins with a broadcast indi-
cator 942 such as all-zero or all-ones, for example. The
all-zero indicator may indicate that the broadcast message
does not require acknowledgement from the end devices,
whereas the all-one indicator may indicate that an acknowl-
edgement is required.

The ID 943 of the transmitting ECU then follows, then the
payload 946. For example, the payload may specify trans-
mission parameters to all of the end devices simultaneously,
such as a schedule when transmissions are permitted, format
conventions, whether a demodulation reference or a gap is
required, among many others. Since broadcast messages are
expected to be rare and of high importance, in some embodi-
ments the globally unique ID of the ECU may be used
instead of the local ID. The end devices, upon detecting the
broadcast indicator 942, may then recognize the ECU long-
form ID code and thereby determine whether the message is
for them

If acknowledgements are required, the end devices may
transmit them sequentially after the broadcast message 946
in a particular order. For example, each end device that
receives the broadcast message can transmit a single-bit
pulse signal at the end device’s pre-assigned time following
the broadcast message. The order or sequence of acknowl-
edgement pulses may be predetermined, such as the numeri-
cal order of the identification code of each end device, or
other order specified by the ECU. Each acknowledgement
948, in dash, may be a single symbol-time transmission,
transmitted at the time allocated for each end device. Any
end device that fails to receive the broadcast message does
not transmit an acknowledgement pulse, thereby leaving a
gap in the reply sequence. The ECU, knowing the sequence,
can then determine from the missing acknowledgements,
which end devices have failed to receive the broadcast
message.

Format-5 is for dual-address messages such as those
transmitted to two end devices at the same time. For
example, a dual-address message may prepare two end
devices, in advance, for a cooperative or simultaneous
action. The format begins with a dual-address indicator 952,
which in this case is all-twos, followed by the local identi-
fication codes of two end devices 953, 954, and then the
payload 956. Other end devices, not listed in the message,
can interpret the dual-address message as an order to remain
silent until the listed end devices have completed their
operation.

Format-5 may also be used by the end devices to transmit
an alarm message. For example, the indicator 952 may be all
9’s for an alarm condition, the first local ID 953 may be the
end device’s identification, the second local ID 954 may be
the ECU’s identification, and the payload 956 may be the
pre-configured alarm information. In this way an end device
can inform the ECU of the alarm without address ambiguity
and, since the alarm format is totally pre-determined, with-
out putting the ECU at risk.

Format-6 is for polling messages, in which the ECU
periodically indicates which end devices have a message on
hold. The ECU holds messages or task orders for its end
devices while they are in DRX sleep mode, and then
transmits the messages when the end devices indicate that
they are ready to resume operations. The polling message
includes a “type” field indicating that the message is a
polling message. For example, the polling indicator 962 may

US 12,248,579 Bl

33

be all fives, thereby enabling the end devices to discriminate
polling from broadcasting. The polling message also
includes a sequence of polling bits 963, each polling bit
corresponding to one of the end devices. Each polling bit is
set, by the ECU, to 1 if the corresponding end device has a
message waiting, or 0 otherwise. Following the polling
message is a blank space 965 in which the end devices that
have messages on hold can request them by transmitting any
brief signal in the blank space 965, at a position pre-assigned
to each end device. The ECU determines, from the positions
or times of the reply pulses, which end devices request their
messages.

The clocks of the sleeping end devices may drift out of
alignment with the ECU during long sleep cycles. To help
the end devices get back into synchronization, the ECU may
transmit pre-polling indicators 961, which in this case are
brief single pulses spaced apart and transmitted by the ECU
before the polling message. The polling message is also
followed by post-polling indicators 969 which in this case
are double pulses, also spaced apart in time. An end device
that wakes up too soon can determine that the polling
message is imminent by detecting the pre-polling indicators,
and can determine that the polling message has already
passed by detecting the post-polling indicators. The end
device can then adjust its clock rate and clock setting, so as
to wake up at the proper time before the next polling
message.

Format-7 is for updating the firmware of an end device.
When the boot sequence or operating system of an end
device needs to be altered, the ECU may instruct the end
device to install new firmware wirelessly using an installa-
tion message. According to Format-7, an installation mes-
sage may include a Type field indicating that it is a firmware
update installation message, then the ID of the end device
972 and the ID of the ECU 973, followed by an index 974
indicating which single-use key to use for decryption, a
password 975 for enabling the PROM write function, the
new firmware, a set of flags 977, and finally an error-
detection code such as a hash or parity construct or CRC of
the message. The portion indicated by 979 is encrypted by
the single-use key which is pointed to, in the key table, by
the index 974.

Optionally, and preferably, the long-form identification
codes of the end device and the ECU may be provided
instead of the the local ID, further disambiguating the
intended action. Numerous other safeguards may provide
security comparable to that of the larger network. Upon
receiving the installation message, the end device may turn
off its receiver or otherwise ignore incoming signals to
prevent interference during the updating process. The end
device can then calculate the error-detection code of the
as-received message, and may compare the calculated value
to the provided error-detection code 978, thereby determin-
ing whether there was a reception fault or some kind of
cyber attack or other problem with the message. If so, the
end device may transmit an alarm or NACK to the ECU, and
other steps depending on implementation. In addition, if the
installation message is erroneously received by another end
device, possibly in a different sub-network, that end device
can ignore it since the ECU ID does not match. If the wrong
end device tries to install it anyway, the procedure would fail
because each end device has a different set of single-use
keys. If the error-detection code 978 agrees with the calcu-
lated value, the end device can retrieve the single-use key
from a hidden key table according to the index 974. The end
device can then decrypt the password 975 and the firmware
976 using the single-use key. (Optionally, for greater secu-

30

35

40

45

50

55

34

rity, the password 975 may be encrypted by a second one of
the single-use keys, such as the key positioned after the one
indicated by the index, in which case both of the used keys
would be discarded after the single usage.) The end device
can then activate the PROM write-enable function using the
decrypted password 975, and can copy the decrypted firm-
ware into the write-enabled PROM. The end device can then
erase any RAM and registers used, then begin executing at
the first location in the boot sequence, thereby causing the
end device to re-boot, and then execute the operating system
as usual.

An ECU can also prevent a hacker from transmitting a
bogus installation message directly to an end device which
the ECU did not transmit. In response, the ECU can imme-
diately begin transmitting noise at maximum power, which
will interfere with the bogus command, causing message
faults, and thereby thwarting the attack.

FIG. 10 is a flowchart showing an exemplary embodiment
of a procedure for a sub-network to autonomously re-boot,
according to some embodiments. The flowchart items may
be executed in any order. As depicted in this non-limiting
example, after a power failure or other shutdown, an end
device may automatically start its ROM-based boot
sequence, enter the operating system, and await ECU
instructions.

At 1001, a particular end device, which has previously
been a member of a sub-network or has otherwise obtained
a local identification code, is powered up. Then at 1002, a
built-in delay inhibits the processor from executing any
instructions until the power has stabilized. At 1003, the
power-up delay has expired, and the end device processor
automatically begins executing instructions in ROM, start-
ing at a predetermined location, such as the lowest execut-
able location in the ROM. The operating system may be
positioned above the boot sequence and therefore starts after
the boot sequence. (Alternatively, the last instruction in the
boot sequence may be a jump to the first instruction of the
operating system, located somewhere else in the ROM.)

Certain locations in the ROM may be reserved. For
example, the first or last group of locations in the ROM, or
some other region such as immediately after the end of the
operating system, may be reserved and not executable. The
reserved locations may contain special data such as the
single-use key table or other security values. The reserved
locations may contain executable code such as detailed
instructions for updating the firmware in the ROM. The
reserved locations may contain pre-configured replies such
as acknowledgements and alarm message templates.

At 1004, as part of the boot sequence, the end device
erases all of its built-in registers and RAM, if present. This
ensures that unwanted residue is erased, including secret
keys and calculations, any malware or attack functions that
have been injected by an attacker, and anything else that an
attacker may try to exploit.

At 1005, after finishing the boot sequence, the processor
reaches the operating system and optionally, at 1006, trans-
mit an upcast message to the ECU announcing that the end
device has re-booted and is now ready for service.

At 1007, according to instructions in the boot sequence or
the operating system or a message from the ECU, the end
device runs a series of self-checks. These may indicate its
system integrity and its ability to perform its functions such
as reading a temperature sensor or turning a switch on and
off. For example, the end device may calculate a hash or
parity of the firmware, or other security check on the current
operating system code, and transmit the results to the ECU.

US 12,248,579 Bl

35

The ECU may quarantine the end device or take other
defensive action upon any fault.

At 1008, the end device may automatically begin per-
forming its programmed task, such as periodically making a
measurement and transmitting the results to the ECU. In one
version, the operating system or boot sequence may specify
that the end device is to automatically start performing
measurements, without waiting for a command from the
ECU. However, the ECU can interrupt such an automatic
cycle with an abort command, and can re-start the cycle at
a later time. In a second version, the end device may wait for
the ECU to tell it when to begin the cycle. An advantage of
waiting for the ECU command to begin a periodic action
(such as a measurement or a DRX sleep cycle) may be that
the end device can thereby maintain synchrony with the
ECU, since the ECU knows when the end device will be
awake or make measurements.

At 1009, during each awake interval, the end device may
monitor the downcast link for instructions from the ECU,
such as instructions to acquire data or to activate an actuator.
Alternatively, at 1010, the ECU may instruct the end device
to re-boot. The end device may then cause a re-boot, for
example by clearing the instruction address counter, which
causes the processor to begin executing at address zero or
the first executable address in PROM, which in this case is
the boot sequence.

FIG. 11 is a chart showing an exemplary embodiment of
a procedure for securely updating firmware in an end device,
according to some embodiments. As depicted in this non-
limiting example, the ECU wirelessly updates the PROM
firmware of an end device, while maintaining the same high
level of security as the 3GPP network.

Across the top are shown an end device 1101 and its ECU
1102, the vehicle’s internal base station 1103, and a human
1109 such as the vehicle driver or pilot. Time proceeds
downward in the figure, however certain items may be
omitted or implemented in a different order.

At 1111, the base station receives an update order from an
authorized source, such as the vehicle manufacturer. Before
proceeding, the base station displays a request 1130 to the
human, requesting permission to install the update. If con-
venient and safe, the human then approves the update at
1112 by providing a physical enablement such as a button
press 1131. For safety, the base station may withhold the
installation request as long as the vehicle is in motion or in
gear, waiting until the vehicle has stopped and the gearshift
is in Park, for example. The request message may be
accompanied by a characteristic tone to ensure that the
human is aware. At 1113, the base station detects the
physical enablement and then transmits the firmware 1132 to
the ECU via a protected and encrypted downlink channel of
the local 3GPP network of the vehicle.

The end device includes a table of single-use keys, known
to the ECU, and uniquely associated with the end device.
Each end device has different keys. At 1114, the ECU selects
a single-use key from the key table, and encrypts the
firmware using that key. The ECU then transmits an instal-
lation message 1133 to the end device in a downcast link.
The installation message 1133 is formatted as an instruction.
It includes the encrypted firmware, an index indicating the
location of the key in the key table, sufficient identification
such as the long ID code of the end device and the long ID
code of the ECU, and optionally a hash or parity construct
of the message. Importantly, the installation message does
NOT include the single-use key itself, either plain or
encrypted.

10

15

20

25

30

35

40

45

50

55

60

65

36

At 1115, the end device receives the installation message
1133 and immediately turns off (or disregards) its receiver.
The end device then verifies the identification codes and the
included hash, rejecting the message if any disagreement. At
1116, the end device uses the index to retrieve the correct
single-use key from its key table, and uses the single-use key
to decrypt the firmware at 1117. The single-use key table of
the end device is stored in non-executable addresses of its
system PROM, or in a separate UROM, or permanently
encoded in the processor itself, or hidden among the boot or
system firmware, or elsewhere according to the installation.
The single-use key table may be installed during manufac-
ture of the end device, or inserted later using a physical
enablement, or other secure manner. For security, the end
device may be configured to read addresses in the system
PROM only as execution addresses, and not as data, except
for certain addresses containing the key table, and can access
those addresses only using an installation message, and only
the address corresponding to the index in the installation
message. In addition, the end device processor may be
configured to read each entry of the single-use key table as
zero or NOP when reading for execution or for data, absent
the installation message. Thus the installation message
authorizes or enables the processor to read the correct
single-use key as data (the “type” field of the installation
message may do this). After reading, the processor may
erase or obfuscate that entry in the key table to prevent
re-use. The installation message may also include an
encrypted password for unlocking the write-enable function
of the PROM, and an error-detection code of the encrypted
or decrypted firmware or of the installation message. All of
this is contained in a single unbroken downcast transmission
in a predetermined format, which the end device interprets
using an installation routine. The installation routine may
reside in the old firmware or permanently embedded in a
separate memory of the end device.

The end device may then calculate the error-detection
code of the as-received message. If it disagrees with the
provided error-detection code, the end device rejects the
installation message, turns its receiver back on, and trans-
mits a NACK to the ECU. (See below for an alternative
error-detection procedure.) Upon receiving the NACK, the
ECU encrypts the system code again using a different
single-use key, and transmits the entire message again.
Alternatively, the ECU may instruct the end device to
re-boot first, and then run security tests, and only then may
attempt the update if the end device passes all the security
tests, and may quarantine the end device if the tests fail.

At 1118, the end device prepares to install the new
firmware in the PROM memory by activating a write-enable
function of the PROM using a password. In a first password
version, the password may be provided in the update instal-
lation message, encrypted along with the operating system.
The end device can decrypt the password and then use it to
update the PROM. In a second password version, the
password may be hidden somewhere in the old or new
operating system. In one version, the end device knows
(according to a routine in the old or new firmware) the
location and configuration of the hidden password. In a third
password version, the hidden location is revealed by the
ECU in the installation message, encrypted along with the
firmware. In a fourth password version, the password may
be divided into two portions, one of which is provided in the
installation message and the other portion is hidden in the
old or new operating system. In a fifth password version, the
password may be encrypted by a second single-use key, such
as the next one in the table (that is, at the index plus 1), in

US 12,248,579 Bl

37

which case the end device retrieves that key also and
decrypts the password separately from the firmware. The
end device knows which method, or other method, is used to
provide the password, and therefore can readily find and
decrypt the hidden password.

After activating the write-enable feature, the end device
then copies the decrypted firmware into the PROM. In a first
decrypting version, the end device stores the firmware
as-received in RAM, then decrypts it into more RAM, then
copies the decrypted firmware from the RAM into the
PROM starting at the first executable address.

In a second decrypting version, the end device decrypts
each symbol or message element of the firmware while the
installation message is being received, and immediately
copies the decrypted bits into the RAM. For example, the
index of the single-use key, and the encrypted password,
may be provided in the installation message before the
encrypted firmware. The end device can then retrieve the
single-use key and use it to decrypt the firmware while the
rest of the message is being received. The end device then
stores each line of the decrypted firmware in RAM. The end
device may then calculate an error-detection code from the
decrypted firmware and compare to a value provided in the
installation message. If the decrypted firmware fails this test,
the end device may abort the installation by erasing the
RAM copies of the firmware, turning the receiver back on,
and sending a NACK or other warning to the ECU. But if the
decrypted firmware appears correct, then the end device can
copy the firmware from the RAM into the PROM and
proceed to run the new boot sequence.

In a third decrypting version, the installation instructions
may be provided in a separate PROM, or permanently in a
UROM, or embedded in the processor. The end device may
execute the installation instructions to demodulate and
decrypt each message element of the installation message
while it is being received, and write each line of the
decrypted firmware directly into sequential PROM
addresses, without storing the decrypted firmware in RAM.
After copying the firmware, the end device can calculate an
error-detection code of the installed firmware and compare
to the provided value. If they agree, the end device may
proceed to re-boot using the new boot sequence. But if they
differ, the end device erases the installed firmware and
transmits a NACK to the ECU. (The processor is still
executing from the installation routine.) The ECU then sends
a second version using a different key. Thus the end device
remains in the installation routine until a successful instal-
lation has been obtained and fully tested.

In an alternative, the error-detection code provided in the
installation message may be based on the decrypted firm-
ware instead of the as-received message, and is encrypted
along with the firmware. In that case, the end device
calculates the error-detection code values twice—once for
the encrypted as-received message, and a second time after
decrypting the firmware. Since the end device does not know
the correct error-detection code value for the encrypted
firmware as-received, it calculates and then transmits that
value to the ECU. The ECU replies with ACK or NACK
depending on whether the value is correct. If it is ok, the end
device then turns off the receiver, decrypts the firmware, and
calculates the second error-detection code based on the
decrypted firmware, and compares that value to the
encrypted value in the installation message. If they agree,
the end device copies the decrypted firmware into its PROM.
If not, it erases the RAM and the decrypted version and asks

10

15

20

25

30

35

40

45

50

55

60

65

38

the ECU for another message. This procedure thus provides
independent tests of both the encrypted and decrypted
versions of the firmware.

In some embodiments, the PROM is of the type that can
be written line-by-line (that is, one address at a time), while
other addresses of the same PROM are being executed by
the processor. In that case, there are several ways the new
firmware may be copied to the PROM. In a first copying
version, the end device may initially move a “copy loop”,
consisting of processor instructions for copying the firm-
ware, into the highest memory addresses of the PROM. The
new firmware may also include the same copy loop instruc-
tions, in exactly the same addresses at the top of memory.
The copy loop then copies the new operating system from
RAM into the PROM, starting at the bottom of the PROM
and proceeding upward. When the copy loop finally reaches
its own address, the copy loop will over-write each copy
loop instruction with the same instruction (that is, no
change). The firmware installation may thus be performed
without interruption. After reaching the top of memory, the
instruction address counter automatically rolls over to zero
while generating a carry bit, which causes the processor to
proceed to the first address in the PROM, which now holds
the new boot sequence, thereby completing the installation.

In a second copying version, the copy loop may be placed
at the top of the old firmware, configured to terminate after
its last instruction is erased. In that case there is no need for
the new firmware to include the copy loop at the top of
memory, since it can be copied there later, such as upon the
next installation procedure.

In a third copying version, the installation instructions
may be provided in a memory other than the main PROM
that holds the firmware. For example, the end device may
include a second PROM or UROM, which contains the
installation instructions, and may execute those installation
instructions to update the main PROM.

In a fourth copying version, the installation instructions
may be hard-wired in the processor. To trigger the copy loop,
the installation message may cause the processor to run the
installation instructions from the second PROM or UROM
or protected location or embedded in the processor. The last
command in the copying instructions may be to begin
execution of the new boot sequence in the main PROM.

At 1119, if not sooner, the end device erases the single-use
key in the key table at the specified address, thereby pre-
venting its re-use. The end device may also record the key
or its index in a used-key list for the same reason.

At 1120, the end device has finished re-booting and
automatically resumes execution at the first address of the
new operating system. It also turns the receiver back on at
1135. In some embodiments, the last task of the installation
instructions or the boot sequence may be to calculate a hash
of the new operating system and transmit that hash 1136 to
the ECU as a security check at 1121. If the hash is correct
at 1122, the ECU transmits an ACK in reply, at which time
the end device begins normal operations. If the hash is
wrong at 1123, then the ECU may send an alert message
1137 to the base station warning of a possible hacker attack.
The ECU may then attempt yet another system update 1138,
using a different single-use key, or it may quarantine the end
device.

At 1124, the end device receives the second installation
message 1138, checks the initial hash, turns off the receiver
1139, retrieves the second key, decrypts the firmware,
checks the decrypted hash, retrieves the write-enable pass-
word, copies the decrypted firmware into the PROM, re-

US 12,248,579 Bl

39

boots using the latest firmware, performs various self-tests,
and transmits the as-installed hash 1140 to the ECU.

At 1125, the ECU checks the as-installed hash 1140 and
verifies that it is correct, and that the other self-tests were
correct. Therefore the ECU transmits an uplink status mes-
sage 1141 to the base station canceling the alarm 1137. The
ECU also transmits a downcast ACK 1142 to the end device,
thereby enabling the end device to resume normal opera-
tions. Finally, the base station or the ECU displays a
message 1143 to the human indicating that the update was
successfully completed.

If the second installation attempt fails, and after some
number of updating failures, the ECU may determine that
the end device is somehow damaged, in which case the ECU
may quarantine the end device, attempt to enlist other end
devices as a workaround, and cause the base station to note
that the end device needs repair. Depending on the criticality
of the end device’s tasks, the base station may or may not
alert the human that the vehicle needs service, by a message
or a dashboard indicator for example. In addition, the base
station may latch an indicator to inform a garage mechanic
or maintenance chief of the problem at the next repair
opportunity.

The procedures of this example may provide enhanced
security during wireless system updates, or other software
updates, by tightly controlling both information and timing.
The single-use keys are stored in secure memory of the end
device. The end device cannot read the single-use key table
until instructed by the ECU, and even then can extract only
the one entry corresponding to the index transmitted by the
ECU. In addition, the end device turns off its receiver
immediately after receiving the installation message (or after
validating the as-received hash), thereby denying a hacker
any opportunity to affect the updating. In addition, the
decrypted firmware hash can be checked against the value
provided (and encrypted) in the installation message. In
addition, the password-protected write-enable function of
the PROM would require the hacker to determine either an
encrypted portion in the message or a hidden portion in the
previously installed firmware, or both, (or a second key from
the key table), thereby protecting the password at the same
level of security as the encrypted firmware. In short, using
the disclosed procedure, the ECU can achieve the system
update wirelessly, while preventing any outsider from influ-
encing the installation.

The procedures required of the end device in this example
are all elementary operations that even a basic microcon-
troller can perform using native instructions and limited
RAM or registers. The attacker, on the other hand, lacks the
index, the single-use key, the correct values of the various
hashes, and the password. If the hacker figures them out
based on the installation message (an impossibility), it is
then too late to affect the installation which is already in
progress, and anyway the end device disables or ignores its
receiver after receiving the installation message. Therefore,
using the disclosed processes, the end device can be updated
wirelessly, using only low-complexity operations, while
maintaining very high cybersecurity.

The example assumes that the encryption is done by the
ECU, and the other security parameters are stored in the
ECU. In another embodiment, for even tighter security, the
base station or core network can store the key table, pass-
words, and so forth, instead of the ECU. For example, the
base station or core network can encrypt the new firmware,
and can transmit only the encrypted version to the ECU. The
base station or core network then keeps the decrypted
versions secure, while the ECU passes the encrypted version

10

15

20

25

30

35

40

45

50

55

60

65

40

down to the end device in the installation message. In
addition, the ECU may not know the correct value of the
security tests that the end device may perform. Instead, the
ECU may pass the results of those tests up to the base station
or core network for checking. In that case, all security values
are maintained by the base station or core network, and thus
would not be exposed even if the ECU is compromised.

FIG. 12 is a flowchart showing an exemplary embodiment
of a procedure for securely updating firmware in an end
device, according to some embodiments. The flowchart
items may be executed in any order. As depicted in this
non-limiting example, the ECU wirelessly and securely
updates the PROM firmware of an end device.

At 1201, the end device has been pre-configured with a
table of single-use keys in its system PROM. For security,
the end device may be configured to read addresses in its
system PROM only as execution addresses, and not as data
(except for a hidden block of addresses containing decryp-
tion keys which can be accessed only when commanded by
an installation message). The end device may also be
configured to read RAM and all other memories, if any, as
data and not as executable addresses. For example, the end
device’s RAM and processor registers are used to hold data
only, and therefore cannot appear in the processor’s instruc-
tion address register. To enforce the execute-only-from-
PROM rule, each memory unit in the end device may
include a one-bit indicator at each memory location, indi-
cating whether it is data or a processor instruction. The
single-use key table is stored in non-executable addresses of
the system PROM, such as the first or last addresses of the
PROM, or in a separate UROM, or encoded in the processor
itself, or distributed among the firmware instructions, among
other possibilities. The single-use key table may be installed
during manufacture of the end device, or inserted later using
a physical enablement, or other secure manner. By these
means or others, the end device may be made immune to
malware injected into its RAM, and similarly prevents an
intruding hacker from reading the key table.

At 1202, the vehicle manufacturer has determined that the
end device needs to update its operating system, perhaps to
handle a different task or to correct a defect. The vehicle
manufacturer sends an update notice to the vehicle. The
update notice may include the long ID code of the end
device to be updated, or other means for identifying it, as
well as the new firmware, and optionally a non-encrypted
human-readable description of the changes. The rest of the
update notice may be encrypted.

The vehicle base station may then provide an update
request to a human, such as the driver or pilot or operator.
In some embodiments, the vehicle may withhold the update
request until a safe time, such as when the vehicle is stopped.
Alternatively, the vehicle may illuminate a lamp or other
means indicating that service is needed.

At 1203, the ECU decrypts the firmware if encrypted by
the vehicle manufacturer, calculates an error-detection code
of the unencrypted version, re-encrypts the new firmware
using one of the single-use keys, then transmits an installa-
tion message to the end device containing the following: (1)
a special instruction to install the new operating system (the
“type” field may do this), (2) the identification code of the
intended end device (such as the globally unique ID code);
(3) the long ID of the ECU, (4) the encrypted boot sequence
and operating system, (5) an encrypted password for unlock-
ing the write-enable function of the PROM, (6) an index
number or address of the single-use key in the key table, and
(7) an error-detection code of the encrypted firmware. The
installation message does not include the single-use key in

US 12,248,579 Bl

41

any form. All of this is contained in a single unbroken
downcast transmission in a predetermined format which the
end device knows. For example, the end device may include
an installation routine in its current firmware, configured to
perform the installation.

After receiving the installation message, the end device
turns its receiver off and calculates the error-detection code
of the as-received message. If it disagrees with the value
contained in the message, the end device determines that
there are reception problems, rejects the installation mes-
sage, turns its receiver back on, and transmits a NACK to the
ECU at 1204. The ECU then encrypts the firmware again
using a different key, and sends it to the end device again. In
addition, the ECU may make some insignificant change to
the firmware before retransmission, to change the error-
detection code value of the unencrypted firmware. This
change may thereby prevent an eavesdropping hacker from
breaking the encryption by correlating the two successive
transmissions.

In another embodiment, the installation message may
omit the encrypted-firmware hash, keeping it unknown to
the end device. Instead, the end device is expected to
calculate the hash and transmit it to the ECU, which then
checks the value and transmits an ACK if the measured
value agrees with the ECU’s previously calculated value,
after which the end device turns off its receiver. If they
disagree, the ECU can send a second installation message
with a different key index. As a further alternative, the ECU
may instruct the end device to re-boot first, and then run
security tests, and only then may attempt the update only if
the end device passes all the security tests.

At 1205, (if not sooner) the end device disables the
receiver to prevent an attacker from interfering during the
installation. At 1206, the end device retrieves the single-use
key from the key table using the index provided, and checks
a used-key list to determine whether the new key, or its
index, has been used before, in which case the end device
rejects the installation message. If neither the index nor the
single-use key is in the used-key list, the end device adds
them to the used-key list to ensure they are never used again,
and then proceeds to decrypt the firmware. (Alternatively,
see step 1208.)

At 1207, the end device prepares to install the new
firmware in the PROM memory by activating a write-enable
function of the PROM. The password may be provided in the
update installation message, encrypted along with the oper-
ating system. Alternatively, the password may be hidden
somewhere in the old or new operating system, preferably in
a random location that can never be executed. Alternatively,
the hidden location may be revealed by the ECU in the
installation message, encrypted along with the firmware.
Optionally, the password may be divided into two portions,
one of which is provided in the installation message and the
other half is hidden in the old or new operating system. For
extra security, the password may be encrypted using a
second single-use key, such as the one at location “index+1”
in the key table, instead of the key used for the firmware. The
end device knows which method, or other method, is used to
provide the password, and therefore can readily find and
decrypt the hidden password.

At 1208, (if not sooner) the end device decrypts the new
firmware using the single-use key, and copies the decrypted
firmware into the PROM at 1209. The end device may also
erase the single-use key in the key table at the specified
address, at this time or upon first retrieving it, and can
thereby prevent its re-use. (If the used key is erased from key
table each time, the used-key list may be unnecessary.)

20

30

40

45

55

60

42

The end device may store the as-received encrypted
firmware in RAM, then decrypt it into more RAM, then copy
the decrypted version into the PROM. Alternatively, the end
device may decrypt each symbol or message element of the
firmware in real-time while the installation message is being
received, and immediately copy the decrypted bits into the
RAM while receiving the next symbol. (This assumes that
the index and the encrypted password appear before the
firmware in the installation message.) The end device may
then calculate the error-detection code from the decrypted
firmware while still in RAM, and can compare to a value
provided in the installation message. If the hash of the
decrypted firmware is correct, the end device can copy the
firmware from the RAM into the PROM and proceed to run
the new boot sequence. However, if the decrypted firmware
fails this test, the end device may abort the installation, erase
the RAM, turn the receiver on, and send a NACK to the
ECU.

As a further alternative, the end device may have the
installation routine in a separate memory such as a UROM,
and therefore may demodulate and decrypt the installation
message directly into the system PROM while being
received. When done, the end device can calculate a hash of
the installed firmware and compare to the provided value. If
they agree, the end device may proceed to re-boot using the
new boot sequence. But if they differ, the end device can
request another installation message (still under control of
the installation routine), by transmitting a NACK or other
message to the ECU. Thus the end device remains in the
installation routine, and executes none of the new firmware,
until a successful installation has been obtained.

Various versions of the error-detection code are envi-
sioned. In a first version, the error-detection code provided
in the installation message is for the decrypted firmware, and
is encrypted along with the firmware. Upon receiving the
complete installation message, the end device first calculates
the error-detection code of the as-received, encrypted firm-
ware, and transmits that value to the ECU. If the value is
incorrect, the ECU replies with NACK or a second instal-
lation message using a different key. If the value is correct,
the ECU sends an ACK and the end device then turns off the
receiver. Later, after decrypting the firmware, the end device
can check the decrypted firmware using the error-detection
code provided in the installation message, without commu-
nicating with the ECU. If the hash of the decrypted firmware
disagrees with the value provided in the installation mes-
sage, the end device can abort the process at that time,
without installing the questionable firmware, and ask for
another installation message. Subsequently, after copying
the firmware into the PROM, the end device can calculate
the error-detection code of the installed version, and again
compare to the value provided in the installation message. If
the installed version disagrees, the end device (still under
control of the installation routine) can request yet another
installation message from the ECU, continuing in this fash-
ion until all checks are passed successfully. This procedure
thus provides independent tests of the firmware in 3 stages:
the as-received encrypted version, the decrypted version,
and the as-installed version, and can reject the firmware on
any error without executing any of the firmware. A hacker
cannot interrupt the process without causing interference,
leading to a hash reject. If the end device requests a
retransmission of the installation message, a hacker still
cannot insert its bogus firmware because each installation
message transmission uses a different key, which the hacker
does not know in advance. Therefore the installation is
secure.

US 12,248,579 Bl

43

In some embodiments, the PROM is of the type that can
be written line-by-line, one address at a time, while other
addresses of the same PROM are being executed by the
processor. In that case, there are several ways to copy the
firmware into the PROM. In a first copying version, the end
device may initially move a “copy loop” of processor
instructions into the highest memory addresses of the
PROM. (Such a copy loop may be as simple as “COPY A,B;
INC A; INC B; JUMP -3.) The new firmware may also
include the same copy loop in the same addresses. The copy
loop then copies the new operating system from RAM into
the PROM, starting at the bottom of the PROM and pro-
ceeding upward. When the copy loop finally reaches its own
address, the copy loop will over-write each copy loop
instruction with the same instruction, after which the firm-
ware installation is done. Then, having reached the top of
memory, the instruction address counter automatically rolls
over to zero while generating a carry bit, which can send an
interrupt that causes the processor to jump to the first address
in the PROM, which now holds the new boot sequence,
thereby completing the installation.

In a second copying version, the copy loop may be placed
at the top of the old firmware, and is configured to terminate
after its last instruction is erased. In that case there is no need
for the new firmware to include the copy loop at the top of
memory, since it can be restored there automatically upon
the next installation procedure.

In a third copying version, the installation instructions
may be provided in a memory other than the main PROM
that holds the firmware. For example, the end device may
include a second memory, such as a second PROM or a
UROM, which contains the installation instructions. The end
device can then execute those installation instructions from
the second memory, to update the main PROM.

In a fourth copying version, the copy loop, or the entire
installation instructions, may be hard-wired in the processor.
The end device can then trigger the copy loop as part of the
installation instructions. The last command in the copying
instructions may be to return to the lowest executable
address of the main PROM upon the rollover carry bit,
thereby beginning execution of the new boot sequence.

At 1210, the end device has finished installing the firm-
ware and has finished re-booting, and now resumes execu-
tion at the first address of the new operating system. In some
embodiments, the installation instructions may include cal-
culating a hash of the new operating system after installa-
tion, and transmitting that value to the ECU as a security
check at 1211. If the value is correct, the ECU transmits an
ACK in reply, at which time the end device begins normal
operations. If the value is wrong, then the ECU may transmit
a NACK, or may attempt yet another system update, using
a different single-use key. After multiple updating failures,
the ECU may determine that the end device is somehow
damaged, in which case the ECU may quarantine the end
device and generate a repair request for the next mainte-
nance opportunity.

The procedures of this example may provide enhanced
security during wireless system updates, by tightly control-
ling both information and timing. The single-use keys are
stored in secure memory of the end device. The end device
cannot read the single-use key table until instructed by the
hub device, and even then can extract only the one entry
corresponding to the index transmitted by the hub device. In
addition, the end device turns off its receiver immediately
after receiving the installation message, thereby denying a
hacker any opportunity to affect the updating. In addition,
the password-protected write-enable function of the PROM

10

15

20

25

30

35

40

45

50

55

60

65

44

would require the hacker to determine either an encrypted
portion in the message or a hidden portion in the previously
installed firmware, or both. In short, using the disclosed
procedure, the ECU and its end device can achieve the
system update wirelessly, while preventing any outsider
from influencing the installation.

The updating procedures involve only elementary opera-
tions that even a basic microcontroller can generally perform
using native instructions and limited RAM or registers. The
attacker, on the other hand, lacks the index, the single-use
key, the password, and the various error-detection code
values. If the hacker figures out all those things based on the
installation message, it is then far too late to affect the
installation. Therefore, using the disclosed processes, the
end device can be updated wirelessly, using only low-
complexity operations, while maintaining very high cyber-
security.

The example assumes that the encryption is done by the
ECU, and the other security parameters are stored in the
ECU. In another embodiment, for even tighter security, the
base station or core network of the vehicle can store the key
table, passwords, and so forth, instead of the ECU. For
example, the base station or core network can encrypt the
new operating system, and can transmit only the encrypted
version to the ECU. The base station or core network then
keeps the decrypted versions secure, while the ECU passes
the encrypted version, unchanged, down to the end device in
the installation message. In addition, the ECU may not know
the correct value of the security tests that the end device may
perform. Instead, the ECU may pass the results of those tests
up to the base station or core network for checking. In that
case, all security values are maintained by the base station
or core network using advanced security, and thus would not
be exposed even if the end devices and ECU are compro-
mised.

FIG. 13A-13G are charts showing various exemplary
embodiments of a memory configuration in an end device,
according to some embodiments. As depicted in these non-
limiting examples, the secure memory of an end device can
include space for a single-use key table, a boot sequence, an
operating system, and installation instructions.

FIG. 13A depicts a secure memory of an end device as a
PROM 1300, subdivided into a region for the single-use key
table 1301 at the bottom of memory (at address zero),
followed by a boot sequence 1302, followed by the operat-
ing system 1303. The rest of memory 1304 is blank or zero
or NOP instructions, each of which causes the processor to
advance to the next location without doing anything. Upon
reaching the top address, it rolls over to zero. The processor
then skips over the key table 1301 which is non-executable,
and continues at the first executable address, which is the
boot sequence.

Processors generally include an instruction address coun-
ter that indicates the address of the next instruction to be
executed and is automatically incremented upon each
instruction retrieval. The processor, in this example, should
never attempt to execute a memory location outside of the
boot sequence 1302 and the operating system 1303. Doing
so indicates a malfunction or a cyber attack. An advantage
of filling the unused memory with NOPs may be that if the
processor ever arrives there due to a cyber attack, the
instruction address counter would automatically cycle
around to the boot sequence, thereby erasing the attack.

In addition, the processor should never attempt to execute
an address in the key table 1301, since those addresses
contain data, not instructions. To avoid treating the single-
use keys 1301 as instructions, the processor may be config-

US 12,248,579 Bl

45

ured to recognize addresses in the key table space and treat
them as non-executable. Alternatively, the processor may be
configured to read the key table contents as NOPs, in which
case the instruction address counter would then cycle up to
the first address in the boot sequence. In addition, the key
table may include no keys that resemble a legal computer
instruction.

Upon finishing the boot instructions, the processor auto-
matically begins executing the operating system 1303
instructions, which follow above the boot sequence. In some
embodiments, the last instructions in the boot sequence may
be to send a message to the ECU indicating that the re-boot
has finished. The first instructions in the operating system
may be to wait for a message from the ECU. In other
embodiments, the first instructions of the operating system
may be to automatically begin doing something pre-config-
ured, such as taking measurements periodically or entering
a DRX sleep cycle.

Upon receiving and demodulating each downcast mes-
sage, the end device operating system 1303 interprets the
message as a command, which generally triggers a pre-
configured routine associated with the command. The rou-
tine, generally stored somewhere in the operating system
1303, may be configured to cause the end device to perform
a measurement or activate an actuator, or other action
depending on the command. Some routines also include
replying to the ECU, after receiving the message (such as an
acknowledgement) and/or after completing the assigned task
(such as a pre-configured “done” message, or by reporting
the measurement value).

In some embodiments, the last instruction of each com-
mand routine may be to reset the instruction address counter
to a particular instruction of the operating system 1303. The
particular instruction may be to wait for the next ECU
command. Alternatively, if the end device is instructed to
begin doing something repetitively, such as periodically
performing a measurement or activating a switch, or enter-
ing a DRX sleep cycle, for example, then the last instruction
of the autonomous routines may be to set the instruction
address counter to the first address of the periodic task,
thereby causing the end device to continue repeating the
routine until ordered to stop. Alternatively, and more com-
monly, the periodic task may be triggered by an internal
timer in the processor, which causes an interrupt when the
timer expires. In that case, the final instructions of the
routine may include resetting the timer and returning to a
wait state. When the interrupt occurs, it generally includes or
indicates the address of the periodic routine that is to be
executed at that time.

FIG. 13B depicts the secure memory of an end device as
a PROM 1310 and an unalterable UROM 1315. The PROM
1310 contains the boot sequence 1312, the operating system
1313, and the key table 1311, in that order, followed by a
final blank or NOP section 1314. The PROM does not
include the installation routine, with instructions related to
updating new firmware, in this example. Instead, the UROM
1315 contains the instructions 1316 for updating and install-
ing new firmware. An advantage of placing the updating
instructions 1316 in a separate memory 1315 may be that the
processor can execute the updating instructions 1316 from
the UROM 1315 while the main PROM 1310 is erased or
partially over-written. For some types of ROM, it is difficult
to install new instructions into a memory while executing
instructions from that memory. Another advantage may be
that a hacker cannot alter the installation instructions 1316
since they are secured separately, thereby preventing intru-
sion during updating processes.

5

10

15

20

25

30

35

40

45

50

55

60

65

46

FIG. 13C depicts secure memories of an end device,
including a PROM 1320 and a UROM or SD-ROM 1325. In
this case the PROM 1320 includes a boot sequence 1322
starting at address 0000, followed by the operating system
1323, then the unused section 1324. In this case, the oper-
ating system 1323 includes the updating instructions. The
UROM or SD-ROM 1325 holds the single-use key table
1321.

As mentioned, an SD-ROM, or self-destruct read-only
memory, erases each entry after it has been read once,
thereby preventing re-use. For example, if a hacker some-
how gains entry into an end device and reads a key in the key
table, the hacker could in principle send a fake installation
message directing the end device to install malware using
the pilfered key. However, if the memory is an SD-ROM, the
attack would fail because the end device would then read
zero when the end device attempts to access the indicated
key, since it was automatically erased as soon as the hacker
reads it. (The SD-ROM is analogous to a quantum wave
function that is instantly changed when it is measured. But
the physics is different.)

An advantage of placing the key table 1321 in unalterable
or self-destruct memory 1325 may be that the single-use
keys 1321 may remain safe from accidental alteration, or
deliberate sabotage by a hacker. An advantage of placing the
boot sequence 1322 at the bottom of the PROM 1320 may
be that a re-boot can then be started simply by clearing the
instruction address counter (that is, setting it to zero),
without having to keep track of non-executable addresses
and the like. If the key table is in another memory unit, all
of the PROM memory addresses are executable, even
though the higher section 1324 contains only null instruc-
tions. Another advantage may be that if the processor
somehow gets into the blank section 1324, it will automati-
cally advance to the end without doing anything, roll over to
address zero, and continue executing the boot sequence
1322. Thus any glitch causing an incursion into the blank
area 1324 inevitably triggers an automatic re-boot.

FIG. 13D depicts a PROM 1330 of an end device con-
taining the boot sequence 1332 starting at the bottom
address 0000, followed by the operating system 1333, then
a blank section 1334 which is filled with instructions to clear
the instruction address counter. Thus each instruction of the
blank section 1334 sends the processor back to the first
instruction of the boot sequence 1332, as desired. The last
section is the single-use key table 1331, which is protected
from incursion by the reset commands of the blank section
1334. A password 1335 (in dash), hidden in the operating
system 1333, is data that can be used to activate the
write-enable feature of the PROM 1330. The password is
located between two of the pre-configured routines, and thus
is skipped over when the routines are executed. This avoids
the password being treated as an executable address. The
end device may already know, according to instructions in
the operating system, how the password 1335 is distributed
or formatted, but not the actual location, while the location
may be indicated in the installation message, encrypted
along with the firmware. Protecting the password 1335 in
this way may provide an additional layer of security.

Also shown is a “retained” memory 1336, which is a
small RAM region containing running conditions (ID
lengths, operating frequencies, and the like) which is not
erased upon each re-boot, when all the other RAM addresses
are erased. It may be convenient for the end device to save
the running conditions instead of erasing them on each
re-boot. Alternatively, some of the processor registers may
be used as the retained memory 1336. Alternatively, the

US 12,248,579 Bl

47

retained memory may be a separate small RAM or PROM,
sized to contain only the running conditions. Alternatively,
the retained memory may be a predetermined portion of a
larger operating RAM in the end device. Saving the running
conditions in this way may enable the end device to resume
operations after each re-boot, without waiting for the ECU
to transmit the current running conditions. However, if a
cyber attack is suspected, the end device may ecrase the
retained memory 1336, or the ECU may command the end
device to do so, and may then refresh the running conditions
in a subsequent downcast transmission.

FIG. 13E depicts a PROM 1340 of an end device includ-
ing first a boot sequence 1342, then an operating system
section 1343, followed by a blank section 1344. The oper-
ating system section 1343 includes the single-use keys 1341
inserted at multiple places. Each single-use key 1341 is
preceded by a “jump-ahead” instruction 1346 which
instructs the processor to jump over the single-use key and
continue executing thereafter. The locations of the single-
use keys 1341 may be marked as non-executable locations,
to ensure that the processor does not inadvertently try to
execute them. Only two such portions are depicted for
clarity, but the intent is to store all of the single-use keys
interleaved with the operating system instructions. Embed-
ding the single-use key table among the operating system
instructions may enable an unlimited number of updates,
since each new firmware version can provide multiple fresh
single-use keys.

In this example, the top of memory includes a special set
of instructions 1347 labeled “Tell ECU”. If the instruction
address counter somehow stumbles into the blank area 1344,
it would then step through all the NOP instructions until
reaching the Tell ECU section 1347, which causes the end
device to transmit an alarm message to the ECU, informing
the ECU that the end device has reached the blank area 1344,
and therefore something is amiss.

FIG. 13F depicts a PROM 1350 of an end device, divided
into two halves, a first half 1358 and a second half 1359. For
example, addresses in the first half 1358 may start with 0 and
in the second half 1351 may start with a 1. The first half 1358
includes the operating system 1353, but with no updating
and installation instructions. This is followed by a blank
section filled with instructions to go to the first address of the
second half 1359, which in this case would be hex-1000. The
second half 1359 includes the boot sequence 1352, followed
by an updating and installation routine 1356, followed by a
second blank section 1357 filled with instructions to clear
the instruction address counter, or equivalently, go to 0000
which is the first instruction of the operating system 1353.
(Alternatively, the second blank section 1357 may be filled
with instructions to go to hex-1000, forcing a re-boot after
the new installation.) Finally the key table 1351 is at the top
of the second half 1359. The last instruction of the boot
sequence 1352 in this case is to clear the processor instruc-
tion address counter to 0000, which automatically starts the
operating system 1353 after each re-boot, and also protects
the updating section 1356 from unintentional intrusion.

An intent of the first blank section 1354, filled with
instructions to go to 1000, may be to force an immediate
re-boot if the processor ever tries to execute an instruction
in the first blank area 1354. An intent of the second blank
area 1357 filled with instructions to go to 0000 may be to
begin running the operating system 1353 automatically as
soon as the updating instructions 1356 are finished. Another
intent may be to protect the single-use key table 1351 from

10

15

20

25

30

35

40

45

50

55

60

65

48

unintentional access. Only the updating instructions 1356
can access the range of addresses corresponding to the key
table 1351.

As a further security feature, the processor may be con-
figured to interpret all addresses that start with a 1, that is,
all addresses in the second half 1359, as non-executable
during normal operations. Only booting and updating pro-
cedures can access the second half 1359. The update instal-
lation message may provide the ability to access the second
half 1359 for updating. For example, upon receiving an
installation message from the ECU, the processor may
enable access to the second-half 1359 and begin executing
at the first instruction of the update section 1356. The update
section 1356 can then retrieve just one of the single-use keys
1351 according to an index provided by the installation
message. In this way, the second half 1359 is protected from
access except for re-booting and updating.

FIG. 13G depicts two PROM memories in an end device.
A PROM-1 1360 includes a boot sequence 1362 starting at
the first address, followed by an update installation code
1366, and finally a single-use key table 1361. Blank regions
are not shown, but may be added to separate those three
regions. Those blank regions may be filled with commands
to re-boot, since they should never be executed. The blank
regions may also include informing the ECU of the problem.
Alternatively, the first instruction of the boot sequence may
be to inform the ECU that the end device is re-booting.
PROM-2 1369 includes an operating system 1363 with no
updating or installation instructions, followed by a blank
region 1364 filled with instructions to return to address zero,
which is the start of the boot sequence 1362. An advantage
of using two PROM memories may be that one of them
(PROM-2 1369) can be updated with a new operating
system, while the other one (PROM-1 1360) manages the
updating process. Another advantage may be that PROM-1
1360 contains routines and data that are unlikely to change,
whereas the operating system 1363 is likely to change
whenever the tasks of the sub-network change.

In some embodiments, PROM-1 can also be changed,
using instructions that may be present in PROM-2 1369 for
example. In that case, the key table 1361 may be refreshed
by a PROM-1 update, enabling an unlimited number of
single-use keys. Allowing PROM-1 to be updated also
enables installation of an improved update routine. If
PROM-1 is the type of memory in which individual
addresses can be re-written, then each single-use key may be
deleted when it is used, or optionally replaced by a new key.
To prevent a hacker from altering PROM-1, the unit may be
configured to require a physical enablement, such as a button
press by a repairman, before altering.

The memory configurations of FIGS. 13A-G are not
exhaustive options for secure memory configurations in the
end devices. Further embodiments, not shown here, include
storing the key table and/or the update code in a small secure
memory within the processor, which may be considered as
a separate ROM in some embodiments. Artisans may devise
other memory configurations after reading this disclosure,
without departing from the present principles.

FIG. 14 is a flowchart showing an exemplary embodiment
of a procedure for selecting identification codes, according
to some embodiments. The flowchart items may be executed
in any order. As depicted in this non-limiting example, a
sub-network increases its identification code requirements in
response to address conflicts with another sub-network
which happens to be using the same local identification
codes.

US 12,248,579 Bl

49

At 1401, the ECU of a first sub-network instructs its end
devices to use their short 8-bit local identification codes in
each upcast message, and to expect each downcast message
to also include the recipient end device’s 8-bit identification
code.

At 1402, one of the end devices detects an upcast mes-
sage, which it did not send, and which includes that end
device’s 8-bit identification code. This is an address conflict,
indicating that a second sub-network has come within radio
range and is using the same identification code for at least
one of its end devices. The end device transmits an alarm to
the ECU indicating the problem, and automatically includes
the ECU identification code so the intruding sub-network
will know it is not for them.

At 1403, the ECU instructs its end devices to begin using
their 16-bit identification codes, to avoid further address
conflicts. However, the second sub-network is still within
radio range, and therefore the end devices of the other
sub-network may have received the instruction to begin
using 16-bit identification. They would not know that the
message was not intended for them because the 8-bit
addresses are still in use, at that time. Therefore, thinking
that the instruction was intended for them, the second
sub-network end devices may also switch to their 16-bit
codes. The ECU of the second sub-network probably also
received the instruction message from the first ECU, but the
second ECU would be able to tell that it came from the ECU
of the first sub-network, since it is a downcast message that
the second ECU did not send. In this case, however, the
second ECU decided that upswitching the identification
codes is a good idea, and therefore began using its 16-bit
codes as well.

In another embodiment, each ECU may be configured to
automatically include, in each broadcast message, the iden-
tification code of the transmitting ECU by default. In that
case, there would be no confusion regarding which sub-
network had changed to the 16-bit codes. After detecting the
broadcast from the first ECU, instructing the first ECU’s end
devices to switch to the 16-bit ID codes, the second ECU
may do the same and instruct its end devices to switch to the
16-bit codes too. In other cases, the second ECU may decide
to keep using the 8-bit identification codes. Such decisions
(whether to increase the ID requirements) may depend on a
pre-configured priority assigned to each sub-network, such
that higher-priority sub-networks, or those with tighter
latency requirements, may decide to continue using the short
8-bit ID codes while another sub-network, with lower pri-
ority, may need to switch to the 16-bit codes to avoid address
contention. In other cases, the larger network may require
lower-priority sub-networks to use the longer ID codes
whenever an address conflict is likely.

At 1404, at a later time, the ECU of the first sub-network
detects a downcast message, which it did not send, including
the 16-bit address of one of its end devices. This is another
address conflict. At 1405, therefore, the ECU of the first
sub-network instructs its end devices to add the 16-bit
identification code of the ECU to all of their upcast and
downcast messages, in addition to the 16-bit identification
code of the end device. As mentioned, the ECU may sign
broadcast messages with its own 16-bit (or 128-bit) ID so
that the end devices of both sub-networks will know which
ECU it is.

At 1406, the ECU and the end devices watch for any more
address conflicts. They don’t expect any, because the 16-bit
identification codes for the end devices and the 16-bit (or
128-bit) identification codes for the ECU, in each message,
represents a high threshold for coincidental conflict.

10

15

20

25

30

35

40

45

50

55

60

50

At 1407, however, another address conflict is detected.
This raises the suspicion that a hacker is afoot, so the ECU
sends a message to the base station alerting that a hacker
may be attempting to spoof the end devices or the ECU.
After that, depending on implementation, the ECU may
instruct its end devices to re-boot or take other security
measures. The ECU may change its own ID to a different
random value, and inform its end devices of the change. The
ECU may instruct that the longer 32-bit codes be used
instead of the 16-bit codes. The larger network may require
further steps to isolate the cyber attack, or diagnose the
problem further.

At 1408, on the other hand, there are no further address
conflicts. The ECU continues to look for messages signed by
the ECU of the second sub-network, for some period of time.
At 1409, the ECU determines whether the second sub-
network is still within radio range. If so, at 1410, the ECU
takes no action, thereby causing its end devices to continue
using the 16-bit identification codes and the ECU code.

At 1411, the ECU has found that the second sub-network
is no longer within radio range, based on a lack of messages
signed by the ECU of the second sub-network for some
period of time. In some embodiments, the ECU may instruct
its end devices to switch back to the 8-bit ID codes without
further delay. In other embodiments, the ECU may be
required to obtain permission from the larger network before
making the switch. The larger network may manage the 1D
requirements of the sub-networks, because the larger net-
work likely knows whether another vehicle is within radio
range. In the depicted case, the larger network agrees that the
sub-network can reduce its ID requirements. Finally at 1412,
the ECU instructs its end devices to revert to the original
8-bit identification codes, and to omit the ECU code, in all
upcast and downcast messages.

In some embodiments, when address conflicts occur, the
vehicle 3GPP network may direct that a first sub-network
can use the shorter codes while a competing second sub-
network must use the longer codes. This decision may be
based, for example, on the 3GPP network placing higher
priority on the first sub-network’s activities.

In some embodiments, the 3GPP network may allocate
different, non-overlapping time intervals for each conflicting
sub-network to communicate, the other remaining silent,
thereby eliminating address conflicts even when the two
sub-networks have the same local identification codes.

In some embodiments, the competing ECUs may agree on
a particular signal that differentiates the messages in the two
sub-networks. For example, one sub-network may begin all
messages with a first demodulation reference while the
second sub-network may use a different demodulation ref-
erence. For example, the first sub-network may precede
messages with a short-form demodulation reference consist-
ing of a 90-degree phase signal followed by a 270-degree
phase signal, whereas the second sub-network may use a
270-degree signal followed by a 90-degree signal, or equiva-
lent. Alternatively, one sub-network may precede messages
with a single pulse signal followed by a gap of no trans-
mission, while the other may use two pulses followed by a
gap.

In some embodiments, the ECUs may change their iden-
tification codes, or the identification codes of their end
devices, to disambiguate the messages. For example, the
ECUs may communicate through the 3GPP network to agree
on the new ECU identification codes, and then may inform
their end devices of the change. The 3GPP network may
manage such conflicts and resolutions for benefit of the
human driver/pilot or to enhance safety, for example. The

US 12,248,579 Bl

51

3GPP network may direct the ECUs, that are known to be
proximate to each other, to use communication methods and
ID versions to avoid future address conflicts, and these
methods may be different for each sub-network.

In some embodiments, an Al model may be configured to
manage the sub-networks including identification protocols
and formats. The Al model may take as input the responsi-
bilities and capabilities of each sub-network in the vehicle,
and current traffic conditions, among other inputs, and may
provide as output a series of instructions to the ECUs,
instructing them as to tasks, protocols, identification types,
and the like.

FIG. 15 is a flowchart showing an exemplary embodiment
of a procedure for responding to a possible hacker attack,
according to some embodiments. The flowchart items may
be executed in any order. As depicted in this non-limiting
example, a problem in a sub-network triggers defensive
actions by the ECU and end devices.

At 1501, the ECU detects a possible attack signature, such
as an illegal format of an upcast message, or an unsolicited
reply from an end device, for example. Alternatively, at
1502, the attack may be detected by the end device, based on
an unexpected change in its RAM or registers, or an actuator
that was mysteriously switched, for example. The end
device then transmits a message, preferably a pre-configured
alarm message, to the ECU indicating the suspected attack.

At 1503, responsive to either the ECU or end device
detecting the problem, the ECU can then order one or
multiple integrity tests that the end device can perform. For
example, the end device can calculate an error-detection
code of the ROM, which should never change outside of an
official update procedure. The ECU could also order a hash
of the RAM and registers, to determine where the problem
exists. The ECU could order the end device to perform a
sensor measurement or actuation repeatedly, some number
of times in rapid succession, to identify any changes in
performance. The end device transmits the result of each test
to the ECU, which at 1504 compares the result to a prede-
termined value, thereby determining whether the system has
changed. In addition, at 1505, the ECU may measure how
long the end device takes to perform each test before
reporting, and may thereby acquire further data about the
possible attack.

At 1506 the ECU checks the integrity test results, and at
1507 finds that all of the integrity tests are passed satisfac-
torily, so the ECU and end devices may then resume normal
operations, and the ECU may inform the base station of the
incident. Alternatively, at 1508, the results of one or more
integrity test have changed, indicating a real problem. In
response, the ECU orders the end device to run the boot
sequence, and then orders the same tests, including espe-
cially those that were failed before.

At 1509, if the results of the second round of integrity
tests are in agreement with the predetermined values, then at
1510 the ECU and end device may resume normal opera-
tions, although at 1511 the ECU may treat upcast messages
from the end device with special care thereafter. Alterna-
tively, at 1512, the ECU finds that the integrity tests are not
in agreement with the predetermined values, and therefore
quarantines the bad end device while contacting the base
station. At 1513, the ECU reconfigures the other end devices
in its sub-network (or enlists other sub-networks) to coop-
erate in filling in the tasks that the now-silent end device was
to perform.

CONCLUSIONS

Sub-networks within a vehicle-wide managed network,
configured according to present principles, may enable

10

15

20

25

35

40

45

50

55

60

65

52

secure wireless connectivity for billions of connected
vehicles worldwide. Basic sensor/actuator end devices are
managed by a gateway ECU, belonging to the vehicle-wide
3GPP network as a user device, are thereby protected from
attack while providing firewall service to protect the ECU
and the larger network. Protocols and memory configura-
tions, and other aspects disclosed herein, may thereby sup-
port the development of next-generation vehicles with
lower-cost manufacturing and enhanced mobile connectiv-
ity, while maintaining the level of cybersecurity expected of
next-generation vehicles.

It may be hoped that 3GPP will include vehicle security
protocols in future standards, thereby providing the unifor-
mity and universality that are so urgently needed in this
valuable, expanding world of connected software-defined
vehicles.

The systems and methods disclosed herein may be con-
figured in an aircraft, to provide needed cybersecurity of
software and control systems of the aircraft, thereby pre-
venting hacking intrusions with catastrophic results. The
cybersecurity principles disclosed herein may be applicable
to both manual updating (using a jump drive, for example)
and remote updating (using wireless signals, for example).

In addition, the aircraft may include a processor and
systems for automatic collision prevention, by analyzing
sensor data (and/or other data from any source, such as a
control tower or an air traffic control center) to determine
relative positions of other vehicles or objects that the aircraft
may encounter, and to determine when a collision becomes
possible and/or imminent. The processor may also calculate
the effect of various actions, such as braking and steering, to
determine which sequence of actions can avoid the collision.
The processor may also autonomously activate linkages
connected to the various aircraft controls such as ailerons,
elevators, rudder while flying, or the wheel brakes and wheel
steering while taxying. In an emergency, the processor may
activate the controls autonomously, according to the selected
sequence, to avoid the collision. However, the pilot may
counteract such autonomous actions using the manual con-
trols.

The wireless embodiments of this disclosure may be aptly
suited for cloud backup protection, according to some
embodiments. Furthermore, the cloud backup can be pro-
vided cybersecurity, such as blockchain, to lock or protect
data, thereby preventing malevolent actors from making
changes. The cybersecurity may thereby avoid changes that,
in some applications, could result in hazards including lethal
hazards, such as in applications related to traffic safety,
electric grid management, law enforcement, or national
security. Artificial intelligence models and/or machine learn-
ing may be used to adjust parameters of the systems and
methods disclosed herein, for example by finding correla-
tions among those parameters that may be impossible for a
human to comprehend due to their complexity, but which
may enable substantial improvements in performance of the
systems and methods.

In some embodiments, non-transitory computer-readable
media may include instructions that, when executed by a
computing environment, cause a method to be performed,
the method according to the principles disclosed herein. In
some embodiments, the instructions (such as software or
firmware) may be upgradable or updatable, to provide
additional capabilities and/or to fix errors and/or to remove
security vulnerabilities, among many other reasons for
updating software. In some embodiments, the updates may
be provided monthly, quarterly, annually, every 2 or 3 or 4
years, or upon other interval, or at the convenience of the

US 12,248,579 Bl

53

owner, for example. In some embodiments, the updates
(especially updates providing added capabilities) may be
provided on a fee basis. The intent of the updates may be to
cause the updated software to perform better than previ-
ously, and to thereby provide additional user satisfaction.

The systems and methods may be fully implemented in
any number of computing devices. Typically, instructions
are laid out on computer readable media, generally non-
transitory, and these instructions are sufficient to allow a
processor in the computing device to implement the method
of the invention. The computer readable medium may be a
hard drive or solid state storage having instructions that,
when run, or sooner, are loaded into random access memory.
Inputs to the application, e.g., from the plurality of users or
from any one user, may be by any number of appropriate
computer input devices. For example, users may employ
vehicular controls, as well as a keyboard, mouse, touch-
screen, joystick, trackpad, other pointing device, or any
other such computer input device to input data relevant to
the calculations. Data may also be input by way of one or
more sensors on the robot, an inserted memory chip, hard
drive, flash drives, flash memory, optical media, magnetic
media, or any other type of file-storing medium. The outputs
may be delivered to a user by way of signals transmitted to
robot steering and throttle controls, a video graphics card or
integrated graphics chipset coupled to a display that maybe
seen by a user. Given this teaching, any number of other
tangible outputs will also be understood to be contemplated
by the invention. For example, outputs may be stored on a
memory chip, hard drive, flash drives, flash memory, optical
media, magnetic media, or any other type of output. It
should also be noted that the invention may be implemented
on any number of different types of computing devices, e.g.,
embedded systems and processors, personal computers, lap-
top computers, notebook computers, net book computers,
handheld computers, personal digital assistants, mobile
phones, smart phones, tablet computers, and also on devices
specifically designed for these purpose. In one implemen-
tation, a user of a smart phone or Wi-Fi-connected device
downloads a copy of the application to their device from a
server using a wireless Internet connection. An appropriate
authentication procedure and secure transaction process may
provide for payment to be made to the seller. The application
may download over the mobile connection, or over the
Wi-Fi or other wireless network connection. The application
may then be run by the user. Such a networked system may
provide a suitable computing environment for an implemen-
tation in which a plurality of users provide separate inputs to
the system and method.

It is to be understood that the foregoing description is not
a definition of the invention but is a description of one or
more preferred exemplary embodiments of the invention.
The invention is not limited to the particular embodiments(s)
disclosed herein, but rather is defined solely by the claims
below. Furthermore, the statements contained in the forego-
ing description relate to particular embodiments and are not
to be construed as limitations on the scope of the invention
or on the definition of terms used in the claims, except where
a term or phrase is expressly defined above. Various other
embodiments and various changes and modifications to the
disclosed embodiment(s) will become apparent to those
skilled in the art. For example, the specific combination and
order of steps is just one possibility, as the present method
may include a combination of steps that has fewer, greater,
or different steps than that shown here. All such other
embodiments, changes, and modifications are intended to
come within the scope of the appended claims.

10

15

20

25

30

35

40

45

50

55

60

65

54

As used in this specification and claims, the terms “for

example”, “e.g.”, “for instance”, “such as”, and “like” and

the terms “comprising”, “having”, “including”, and their
other verb forms, when used in conjunction with a listing of
one or more components or other items, are each to be
construed as open-ended, meaning that the listing is not to
be considered as excluding other additional components or
items. Other terms are to be construed using their broadest
reasonable meaning unless they are used in a context that

requires a different interpretation.

The invention claimed is:

1. A vehicle comprising:

a) an internal wireless network contained in the vehicle,
the internal wireless network comprising an internal
base station and an internal core network;

b) a plurality of electronic control units (“ECUs”), each
ECU registered as a user device on the internal wireless
network and configured to communicate wirelessly
with the internal base station on managed communica-
tion channels; and

¢) for each ECU, two or more end devices associated with
the ECU, each end device comprising a sensor or an
actuator, the sensor or actuator operably connected to a
processor comprising a programmable read-only
memory (“PROM?”), the processor operably connected
to a wireless transceiver configured for wireless com-
munication with the ECU;,

d) wherein the internal base station or internal core
network comprises a transceiver configured to commu-
nicate, using a Doppler-corrected wireless link, with an
external base station or external core network at a fixed
site external to the vehicle; and

e) wherein each communication between an end device
and the associated ECU comprises exactly one of:

i) a command transmitted from the ECU to the end
device; or

i) a message comprising data or a pre-configured reply,
transmitted from the end device to the ECU.

2. The vehicle of claim 1, wherein the managed commu-
nication channels between each ECU and the internal base
station are configured according to 5G or 6G technologies.

3. The vehicle of claim 1, comprising at least one of:

a) a roadway vehicle comprising an automobile, a truck,
or a bus;

b) a railroad vehicle comprising a passenger train or a
freight train;

¢) a waterborne vehicle comprising a boat or ship or
submarine;

d) an airborne vehicle comprising a passenger airliner, a
freight aircraft, a private plane, a helicopter, or an air
taxi.

4. The vehicle of claim 1, wherein:

a) each end device is configured to accept messages from
the associated ECU, and to reject or ignore all messages
received from all other sources; and

b) each ECU is configured to accept messages received
from an end device associated with the ECU, and to
accept messages received from the base station, and to
reject or ignore all messages received from all other
sources, other than the associated end devices and the
base station.

5. The vehicle of claim 1, wherein for each end device:

a) the PROM contains instructions comprising a boot
sequence and an operating system;

b) the processor is configured to execute instructions of
the boot sequence and the operating system; and

US 12,248,579 Bl

55

¢) the processor is further configured to avoid executing
instructions from all other sources, other than the boot
sequence and the operating system contained in the
PROM.

6. The vehicle of claim 1, wherein for each end device:

a) the PROM contains a single-use key table comprising
one or more single-use keys;

b) the end device is configured to receive an installation
message from the ECU associated with the end device,
the installation message comprising an index and
encrypted firmware;

¢) the processor is configured to retrieve a particular
single-use key from the single-use key table, selected
according to the index; and

d) the processor of the end device is further configured to
use the particular single-use key to decrypt the
encrypted firmware, and to install the decrypted firm-
ware in the PROM.

7. The vehicle of claim 6, wherein for each end device:

a) the PROM includes a write-enable function that
enables alteration of one or more instructions in the
PROM;

b) the write-enable feature is protected by a password; and

¢) the installation message comprises information
enabling the processor to determine the password.

8. A vehicle comprising:

a) an internal wireless network contained in the vehicle,
the internal wireless network comprising an internal
base station and an internal core network;

b) a plurality of electronic control units (“ECUs”), each
ECU registered as a user device on the internal wireless
network and configured to communicate wirelessly
with the internal base station on managed communica-
tion channels; and

¢) for each ECU, two or more end devices associated with
the ECU, each end device comprising a sensor or an
actuator, the sensor or actuator operably connected to a
processor comprising a programmable read-only
memory (“PROM?”), the processor operably connected
to a wireless transceiver configured for wireless com-
munication with the ECU;,

d) wherein the internal base station or internal core
network comprises a transceiver configured to commu-

10

15

20

25

30

35

40

56

nicate, using a Doppler-corrected wireless link, with an
external base station or external core network at a fixed
site external to the vehicle:

e) wherein each end device is configured to accept mes-
sages from the associated ECU, and to reject or ignore
all messages received from all other sources; and

f) wherein each ECU is configured to accept messages
received from an end device associated with the ECU,
and to accept messages received from the base station,
and to reject or ignore all messages received from all
other sources, other than the associated end devices and
the base station.

9. A vehicle comprising:

a) an internal wireless network contained in the vehicle,
the internal wireless network comprising an internal
base station and an internal core network;

b) a plurality of electronic control units (“ECUs”), each
ECU registered as a user device on the internal wireless
network and configured to communicate wirelessly
with the internal base station on managed communica-
tion channels; and

¢) for each ECU, two or more end devices associated with
the ECU, each end device comprising a sensor or an
actuator, the sensor or actuator operably connected to a
processor comprising a programmable read-only
memory (“PROM?”), the processor operably connected
to a wireless transceiver configured for wireless com-
munication with the ECU;,

d) wherein the internal base station or internal core
network comprises a transceiver configured to commu-
nicate, using a Doppler-corrected wireless link, with an
external base station or external core network at a fixed
site external to the vehicle;

e) wherein for each end device:

i. the PROM contains instructions comprising a boot
sequence and an operating system;

ii. the processor is configured to execute instructions of
the boot sequence and the operating system; and
iii. the processor is further configured to avoid execut-

ing instructions from all other sources, other than the
boot sequence and the operating system contained in
the PROM.

	Front Page
	Drawings
	Specification
	Claims

